Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Microb Cell Fact ; 22(1): 254, 2023 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-38072930

RESUMO

BACKGROUND: It is increasingly recognized that conventional food production systems are not able to meet the globally increasing protein needs, resulting in overexploitation and depletion of resources, and environmental degradation. In this context, microbial biomass has emerged as a promising sustainable protein alternative. Nevertheless, often no consideration is given on the fact that the cultivation conditions affect the composition of microbial cells, and hence their quality and nutritional value. Apart from the properties and nutritional quality of the produced microbial food (ingredient), this can also impact its sustainability. To qualitatively assess these aspects, here, we investigated the link between substrate availability, growth rate, cell composition and size of Cupriavidus necator and Komagataella phaffii. RESULTS: Biomass with decreased nucleic acid and increased protein content was produced at low growth rates. Conversely, high rates resulted in larger cells, which could enable more efficient biomass harvesting. The proteome allocation varied across the different growth rates, with more ribosomal proteins at higher rates, which could potentially affect the techno-functional properties of the biomass. Considering the distinct amino acid profiles established for the different cellular components, variations in their abundance impacts the product quality leading to higher cysteine and phenylalanine content at low growth rates. Therefore, we hint that costly external amino acid supplementations that are often required to meet the nutritional needs could be avoided by carefully applying conditions that enable targeted growth rates. CONCLUSION: In summary, we demonstrate tradeoffs between nutritional quality and production rate, and we discuss the microbial biomass properties that vary according to the growth conditions.


Assuntos
Aminoácidos , Proteoma , Biomassa , Cisteína , Tamanho Celular
3.
Sci Total Environ ; 860: 160501, 2023 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-36436634

RESUMO

Medium chain carboxylic acids (MCCA) such as caproic acid have a plethora of applications, ranging from food additives to bioplastics. MCCA can be produced via microbial chain elongation using waste and side-streams as substrates, a process that can be more sustainable than conventional production routes. Most chain elongation studies have focused on mesophilic conditions, with only two recent studies hinting at the possibility of thermophilic chain elongation, but a systematic study of its mechanisms is lacking. Here, we investigated thermophilic chain elongation from grass juice, to understand the effect of key operational parameters (pH, temperature, substrate) on the process performance and to establish the key microbial genera and their role in the system. The genus Caproiciproducens was identified as responsible for thermophilic chain elongation, and caproic acid production was most favorable at pH 6.0 and 50 °C among the conditions tested, reaching an average concentration of 3.4 g/L. Batch experiments showed that the substrate for caproic acid production were glucose and xylose, while lactic acid led to the production of only butyric acid. Fed-batch experiments showed that substrate availability and the presence of caproic acid in the system play a major role in shaping the profile of thermophilic chain elongation. The increase of the total sugar concentration by glucose addition (without changing the organic load) during continuous operation led to a microbial community dominated (75 %) by Caproiciproducens and increased by 76 % the final average caproic acid concentration to 6.0 g/L (13 gCOD/L) which represented 32 % (g/g) of the total carboxylic acids. The highest concentration achieved was 7.2 g/L (day 197) which is the highest concentration reported under thermophilic conditions thus far. The results of this work pave the way to the potential development of thermophilic systems for upgrading various underexplored abundant and cheap sugar-rich side-streams to caproic acid.


Assuntos
Reatores Biológicos , Caproatos , Fermentação , Açúcares , Carboidratos , Ácidos Carboxílicos , Glucose
4.
PLoS One ; 17(2): e0262497, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35108295

RESUMO

Organic fertilizers and especially microbial biomass, also known as microbial fertilizer, can enable a paradigm shift to the conventional fertilizer-to-food chain, particularly when produced on secondary resources. Microbial fertilizers are already common practice (e.g. Bloom® and Synagro); yet microbial fertilizer blends to align the nutrient release profile to the plant's needs are, thus far, unexplored. Moreover, most research only focuses on direct fertilization effects without considering added value properties, such as disease prevention. This study has explored three promising types of microbial fertilizers, namely dried biomass from a consortium of aerobic heterotrophic bacteria, a microalga (Arthrospira platensis) and a purple non-sulfur bacterium (Rhodobacter sphaeroides). Mineralization and nitrification experiments showed that the nitrogen mineralization profile can be tuned to the plant's needs by blending microbial fertilizers, without having toxic ammonium peaks. In a pot trial with perennial ryegrass (Lolium perenne L.), the performance of microbial fertilizers was similar to the reference organic fertilizer, with cumulative dry matter yields of 5.6-6.7 g per pot. This was confirmed in a pot trial with tomato (Solanum lycopersicum L.), showing an average total plant length of 90-99 cm after a growing period of 62 days for the reference organic fertilizer and the microbial fertilizers. Moreover, tomato plants artificially infected with powdery mildew (Oidium neolycopersici), a devastating disease for the horticultural industry, showed reduced disease symptoms when A. platensis was present in the growing medium. These findings strengthen the application potential of this novel class of organic fertilizers in the bioeconomy, with a promising match between nutrient mineralization and plant requirements as well as added value in crop protection.


Assuntos
Fertilizantes/microbiologia , Lolium/crescimento & desenvolvimento , Solanum lycopersicum/crescimento & desenvolvimento , Bactérias Aeróbias/química , Bactérias Aeróbias/metabolismo , Biomassa , Fertilizantes/análise , Concentração de Íons de Hidrogênio , Nitrificação , Nitrogênio/análise , Nutrientes/análise
5.
Curr Opin Biotechnol ; 75: 102685, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35033929

RESUMO

Microbial protein (MP) is back on the table after decades of slumbering interest. One-carbon (C1) substrates are attractive for MP production due to their efficient production from CO2 and renewable electricity, linking carbon capture to food while circumventing agriculture. Here we compared all reported combinations of C1 (formate/methanol/methane) and microorganisms (bacteria/yeasts) in terms of engineering and biomass quality parameters, focusing on the amino acid match with human requirements. This meta-analysis based on >100 studies suggests that methanol is the most promising C1, and methanol-grown microorganisms seem most nutritional with bacteria and yeasts having different merits. More sustainable MP could be produced if metabolic engineering tools yielding microorganisms with more efficient C1 assimilation pathways and steered amino acid profiles are deployed.


Assuntos
Engenharia Metabólica , Metanol , Aminoácidos/metabolismo , Bactérias/metabolismo , Carbono/metabolismo , Humanos , Metano/metabolismo , Metanol/metabolismo
6.
Front Bioeng Biotechnol ; 9: 733753, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34527661

RESUMO

Increasing efforts are directed towards the development of sustainable alternative protein sources among which microbial protein (MP) is one of the most promising. Especially when waste streams are used as substrates, the case for MP could become environmentally favorable. The risks of using organic waste streams for MP production-the presence of pathogens or toxicants-can be mitigated by their anaerobic digestion and subsequent aerobic assimilation of the (filter-sterilized) biogas. Even though methane and hydrogen oxidizing bacteria (MOB and HOB) have been intensively studied for MP production, the potential benefits of their co-cultivation remain elusive. Here, we isolated a diverse group of novel HOB (that were capable of autotrophic metabolism), and co-cultured them with a defined set of MOB, which could be grown on a mixture of biogas and H2/O2. The combination of MOB and HOB, apart from the CH4 and CO2 contained in biogas, can also enable the valorization of the CO2 that results from the oxidation of methane by the MOB. Different MOB and HOB combinations were grown in serum vials to identify the best-performing ones. We observed synergistic effects on growth for several combinations, and in all combinations a co-culture consisting out of both HOB and MOB could be maintained during five days of cultivation. Relative to the axenic growth, five out of the ten co-cultures exhibited 1.1-3.8 times higher protein concentration and two combinations presented 2.4-6.1 times higher essential amino acid content. The MP produced in this study generally contained lower amounts of the essential amino acids histidine, lysine and threonine, compared to tofu and fishmeal. The most promising combination in terms of protein concentration and essential amino acid profile was Methyloparacoccus murrelli LMG 27482 with Cupriavidus necator LMG 1201. Microbial protein from M. murrelli and C. necator requires 27-67% less quantity than chicken, whole egg and tofu, while it only requires 15% more quantity than the amino acid-dense soybean to cover the needs of an average adult. In conclusion, while limitations still exist, the co-cultivation of MOB and HOB creates an alternative route for MP production leveraging safe and sustainably-produced gaseous substrates.

7.
mSphere ; 5(5)2020 10 28.
Artigo em Inglês | MEDLINE | ID: mdl-33115836

RESUMO

Microbial cells experience physiological changes due to environmental change, such as pH and temperature, the release of bactericidal agents, or nutrient limitation. This has been shown to affect community assembly and physiological processes (e.g., stress tolerance, virulence, or cellular metabolic activity). Metabolic stress is typically quantified by measuring community phenotypic properties such as biomass growth, reactive oxygen species, or cell permeability. However, bulk community measurements do not take into account single-cell phenotypic diversity, which is important for a better understanding and the subsequent management of microbial populations. Raman spectroscopy is a nondestructive alternative that provides detailed information on the biochemical makeup of each individual cell. Here, we introduce a method for describing single-cell phenotypic diversity using the Hill diversity framework of Raman spectra. Using the biomolecular profile of individual cells, we obtained a metric to compare cellular states and used it to study stress-induced changes. First, in two Escherichia coli populations either treated with ethanol or nontreated and then in two Saccharomyces cerevisiae subpopulations with either high or low expression of a stress reporter. In both cases, we were able to quantify single-cell phenotypic diversity and to discriminate metabolically stressed cells using a clustering algorithm. We also described how the lipid, protein, and nucleic acid compositions changed after the exposure to the stressor using information from the Raman spectra. Our results show that Raman spectroscopy delivers the necessary resolution to quantify phenotypic diversity within individual cells and that this information can be used to study stress-driven metabolic diversity in microbial populations.IMPORTANCE Microbial cells that live in the same community can exist in different physiological and morphological states that change as a function of spatiotemporal variations in environmental conditions. This phenomenon is commonly known as phenotypic heterogeneity and/or diversity. Measuring this plethora of cellular expressions is needed to better understand and manage microbial processes. However, most tools to study phenotypic diversity only average the behavior of the sampled community. In this work, we present a way to quantify the phenotypic diversity of microbial samples by inferring the (bio)molecular profile of its constituent cells using Raman spectroscopy. We demonstrate how this tool can be used to quantify the phenotypic diversity that arises after the exposure of microbes to stress. Raman spectroscopy holds potential for the detection of stressed cells in bioproduction.


Assuntos
Microbiota , Análise de Célula Única/métodos , Análise Espectral Raman/métodos , Biodiversidade , Escherichia coli/efeitos dos fármacos , Escherichia coli/metabolismo , Etanol/farmacologia , Fenótipo , Saccharomyces cerevisiae/metabolismo , Análise de Célula Única/instrumentação , Estresse Fisiológico/efeitos dos fármacos
8.
FEMS Microbiol Lett ; 367(18)2020 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-32970805

RESUMO

The rapidly increasing demand for protein has led to the pursuit of new protein sources, among which microbial protein (MP) is one of the most promising. Although the nutritional properties of MP are important and often well-studied, the sensory properties of the microbial cells will in part determine the commercial success of the product and are much less investigated. Here we assessed the odor fingerprint of dried bacteria originating from pure cultures and enriched mixed microbial communities using an electronic nose (e-nose). The e-nose discriminated between the different MP sources, while the choice of culture and substrate substantially affected their volatile organic compound (VOC) profile. The most dominant odor descriptors (>20% of VOC peak area) were sweet, fruity and fishy, while the mixed cultures presented higher peak areas indicating potentially more intense aromas than the pure cultures. The e-nose can detect the suitability of new MP sources and determine their best end-use.


Assuntos
Bactérias/metabolismo , Proteínas de Bactérias/metabolismo , Meios de Cultura/metabolismo , Odorantes/análise , Bactérias/classificação , Bactérias/crescimento & desenvolvimento , Proteínas de Bactérias/análise , Meios de Cultura/química , Nariz Eletrônico , Microbiologia de Alimentos , Microbiota , Compostos Orgânicos Voláteis/análise , Compostos Orgânicos Voláteis/metabolismo
9.
Bioresour Technol ; 317: 124021, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32829116

RESUMO

Production of microbial protein (MP) from recovered resources - e.g. CO2-sourced formate and acetate - could provide protein while enabling CO2 capture. To assess the protein quality obtained from this process, pure cultures and enriched communities were selected and characterized kinetically, stoichiometrically and nutritionally. Growth on acetate resulted in up to 5.3 times higher maximum specific growth rate (µmax) than formate (i.e. 0.15-0.41 h-1 for acetate compared to 0.061-0.29 h-1 for formate at pH = 7). The protein content was a function of the growth phase, with the highest values during stationary phase, ranging between 18 and 82%CDW protein depending on the organism and substrate. The negative correlation between biomass productivity and protein content indicated a trade-off between production rate and product quality. The final product (i.e. dried MP) quality was in most cases superior to soybean and all cultures were rich in threonine, phenylalanine and tyrosine, regardless of the carbon source.


Assuntos
Carbono , Biomassa
10.
Bioresour Technol ; 307: 123242, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32248065

RESUMO

Consortia of aerobic heterotrophic bacteria (AHB) have potential as sustainable microbial protein (MP) source in animal feed. A systematic screening of the nutritional value and safety of AHB biomass from full-scale activated sludge plants from 25 companies in the food sector was performed. The variable protein content (21-49%) was positively correlated with biomass-specific nitrogen loading rate and negatively with sludge retention time (SRT). Compared to the essential amino acid profile of soybean meal protein, AHB displayed an overall surplus of threonine and valine, and deficits in cysteine, histidine, lysine and phenylalanine. Histidine was positively correlated with bCOD/PO43- in the influent and valine, isoleucine and threonine with SRT. Most AHB samples were safe apropos heavy metals, polycyclic aromatic hydrocarbons and antibiotics. Some pesticides exceeded regulatory limits, necessitating mitigation. This work highlighted that the food sector can provide high-quality MP, while retrofitting existing activated sludge plants towards high-rate processes can increase AHB quality and productivity.


Assuntos
Reatores Biológicos , Esgotos , Animais , Bactérias Aeróbias , Bebidas , Processos Heterotróficos , Eliminação de Resíduos Líquidos
11.
Microb Biotechnol ; 13(5): 1377-1389, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32180337

RESUMO

The transition to sustainable agriculture and horticulture is a societal challenge of global importance. Fertilization with a minimum impact on the environment can facilitate this. Organic fertilizers can play an important role, given their typical release pattern and production through resource recovery. Microbial fertilizers (MFs) constitute an emerging class of organic fertilizers and consist of dried microbial biomass, for instance produced on effluents from the food and beverage industry. In this study, three groups of organisms were tested as MFs: a high-rate consortium aerobic bacteria (CAB), the microalga Arthrospira platensis ('Spirulina') and a purple non-sulfur bacterium (PNSB) Rhodobacter sp. During storage as dry products, the MFs showed light hygroscopic activity, but the mineral and organic fractions remained stable over a storage period of 91 days. For biological tests, a reference organic fertilizer (ROF) was used as positive control, and a commercial organic growing medium (GM) as substrate. The mineralization patterns without and with plants were similar for all MFs and ROF, with more than 70% of the organic nitrogen mineralized in 77 days. In a first fertilization trial with parsley, all MFs showed equal performance compared to ROF, and the plant fresh weight was even higher with CAB fertilization. CAB was subsequently used in a follow-up trial with petunia and resulted in elevated plant height, comparable chlorophyll content and a higher amount of flowers compared to ROF. Finally, a cost estimation for packed GM with supplemented fertilizer indicated that CAB and a blend of CAB/PNSB (85%/15%) were most cost competitive, with an increase of 6% and 7% in cost compared to ROF. In conclusion, as bio-based fertilizers, MFs have the potential to contribute to sustainable plant nutrition, performing as good as a commercially available organic fertilizer, and to a circular economy.


Assuntos
Fertilizantes , Solo , Agricultura , Biomassa , Fertilização , Nitrogênio/análise , Spirulina
12.
Microb Biotechnol ; 13(5): 1336-1365, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-31432629

RESUMO

Purple non-sulphur bacteria (PNSB) are phototrophic microorganisms, which increasingly gain attention in plant production due to their ability to produce and accumulate high-value compounds that are beneficial for plant growth. Remarkable features of PNSB include the accumulation of polyphosphate, the production of pigments and vitamins and the production of plant growth-promoting substances (PGPSs). Scattered case studies on the application of PNSB for plant cultivation have been reported for decades, yet a comprehensive overview is lacking. This review highlights the potential of using PNSB in plant production, with emphasis on three key performance indicators (KPIs): fertilization, resistance to stress (biotic and abiotic) and environmental benefits. PNSB have the potential to enhance plant growth performance, increase the yield and quality of edible plant biomass, boost the resistance to environmental stresses, bioremediate heavy metals and mitigate greenhouse gas emissions. Here, the mechanisms responsible for these attributes are discussed. A distinction is made between the use of living and dead PNSB cells, where critical interpretation of existing literature revealed the better performance of living cells. Finally, this review presents research gaps that remain yet to be elucidated and proposes a roadmap for future research and implementation paving the way for a more sustainable crop production.


Assuntos
Metais Pesados , Bactérias/genética , Fertilização , Desenvolvimento Vegetal , Plantas
13.
Water Res ; 171: 115406, 2020 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-31881500

RESUMO

Livestock production is utilizing large amounts of protein-rich feed ingredients such as soybean meal. The proven negative environmental impacts of soybean meal production incentivize the search for alternative protein sources. One promising alternative is Microbial Protein (MP), i.e. dried microbial biomass. To date, only few life cycle assessments (LCAs) for MP have been carried out, none of which has used a consequential modelling approach nor has been investigating the production of MP on food and beverage wastewater. Therefore, the objective of this study is to evaluate the environmental impact of MP production on a food and beverage effluent as a substitute for soybean meal using a consequential modelling approach. Three different types of MP production were analysed, namely consortia containing Aerobic Heterotrophic Bacteria (AHB), Microalgae and AHB (MaB), and Purple Non-Sulfur Bacteria (PNSB). The production of MP was modelled for high-strength potato wastewater (COD = 10 kg/m3) at a flow rate of 1,000 m3/day. LCA results were compared against soybean meal production for the endpoint impact categories human health, ecosystems, and resources. Soybean meal showed up to 52% higher impact on human health and up to 87% higher impact on ecosystems than MP. However, energy-related aspects resulted in an 8-88% higher resource exploitation for MP. A comparison between the MP production systems showed that MaB performed best when considering ecosystems (between 13 and 14% better) and resource (between 71 and 80% better) impact categories, while AHB and PNSB had lower values for the impact category human health (8-12%). The sensitivity analysis suggests that the conclusions drawn are robust as in the majority of 1,000 Monte Carlo runs the initial results are confirmed. In conclusion, it is suggested that MP is an alternative protein source of comparatively low environmental impact that should play a role in the future protein transition, in particular when further process improvements can be implemented and more renewable or waste energy sources will be used.


Assuntos
Solanum tuberosum , Águas Residuárias , Animais , Ecossistema , Meio Ambiente , Glycine max
14.
Waste Manag ; 91: 20-32, 2019 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-31203939

RESUMO

Each ton of organic household waste that is collected, transported and composted incurs costs (€75/ton gate fee). Reducing the mass and volume of kitchen waste (KW) at the point of collection can diminish transport requirements and associated costs, while also leading to an overall reduction in gate fees for final processing. To this end, the objective of this research was to deliver a proof of concept for the so-called "urban pre-composter"; a bioreactor for the decentralized, high-rate pre-treatment of KW, that aims at mass and volume reduction at the point of collection. Results show considerable reductions in mass (33%), volume (62%) and organic solids (32%) of real KW, while provision of structure material and separate collection of leachate was found to be unnecessary. The temperature profile, C/N ratio (12) and VS/TS ratio (0.69) indicated that a mature compost can be produced in 68  days (after pre-composting and main composting). An economic Monte Carlo simulation yielded that the urban pre-composter concept is not more expensive than the current approach, provided its cost per unit is €8,000-€14,500 over a 10-year period (OPEX and CAPEX, in 80% of the cases). The urban pre-composter is therefore a promising system for the efficient pre-treatment of organic household waste in an urban context.


Assuntos
Compostagem , Reatores Biológicos , Solo , Temperatura
15.
Bioresour Technol ; 273: 237-243, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30447625

RESUMO

Biofuels are viewed as the answer to safeguard the currently challenged energy security. To this end, the present study provides a comparison between approaches regarding microalgal biomass conversion to bioenergy, with a view on sustainable implementation. The energetic valorization of Chlorella vulgaris biomass cultivated under heterotrophic, sulfur-limited conditions was investigated through the biofuels biodiesel, biogas (biomethane) and combustible dry biomass. The lipid productivity can reach the value of 442.9 ±â€¯6.5 mg L-1 d-1 containing suitable fatty acids for biodiesel production. Next, biochemical methane potential (BMP) assays yielded 360.9 ±â€¯20.2 mL CH4 g VS-1added under mesophilic conditions, while the calorific value of dry C. vulgaris biomass was measured as 24,538 ±â€¯182 kJ kgDW-1 (5,865 ±â€¯43 kcal kgDW-1). Considering the downstream processing required in each approach, the most promising energy valorization method is anaerobic digestion able to reach values up to 20,862 kJ Lreactor-1 day-1 in continuous systems.


Assuntos
Biocombustíveis , Biomassa , Chlorella vulgaris/metabolismo , Ácidos Graxos/biossíntese , Processos Heterotróficos , Lipídeos/biossíntese , Metano/biossíntese , Microalgas
16.
Bioresour Technol ; 243: 356-365, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28683389

RESUMO

The present study aimed at: (1) determining the effect of sulfur addition on biomass growth and (2) assessing the effect of sulfur, phosphorus and nitrogen limitation on lipid accumulation by C. vulgaris SAG 211-11b. The sulfur cellular content was more than two-fold higher under nitrogen and phosphorus limitation (0.52% and 0.54%ww-1, respectively) compared to sulfur requirements (0.20%ww-1) under sulfur limiting conditions. The nitrogen needs are significantly lower (2.81-3.35%ww-1) when compared to other microalgae and become 23% lower under nitrogen or phosphorus limitation. The microalga exhibited substrate inhibition above 30gL-1 initial glucose concentration. Sulfur limitation had the most significant effect on lipid accumulation, resulting in maximum total lipid content of 53.43±3.93%ggDW-1. In addition to enhancing lipid productivity, adopting the optimal nutrient limitation strategy can result in cost savings by avoiding unnecessary nutrient additions and eliminate the environmental burden due to wasted resources.


Assuntos
Lipídeos , Biomassa , Chlorella , Chlorella vulgaris , Processos Heterotróficos , Cinética , Microalgas , Nitrogênio
17.
Bioresour Technol ; 219: 694-701, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27544920

RESUMO

The goal of the present study was to investigate the pH range that can support the growth of C. vulgaris, and, more specifically, to identify the optimal pH for the microalga's growth, under heterotrophic conditions. Furthermore, the effect of pH on the accumulation of intracellular lipids was studied. A wide range of pH values was tested using the respective buffer solutions. The optimal pH for biomass growth and lipid accumulation under sulfur limitation was found to be 7.5, resulting in maximum specific growth rate of 0.541days(-1) and maximum total lipid content of 53.43%ggDW(-1). The fatty acid composition of C. vulgaris was found to be unrelated to pH, as the lipid content did not present significant variations in the pH values tested. The fatty acid profile was mainly composed of monounsaturated fatty acids (MUFAs) with the dominant one being oleic acid (C18:1).


Assuntos
Chlorella vulgaris/crescimento & desenvolvimento , Metabolismo dos Lipídeos , Microalgas/crescimento & desenvolvimento , Enxofre/metabolismo , Biomassa , Biotecnologia/métodos , Chlorella vulgaris/metabolismo , Ácidos Graxos/análise , Ácidos Graxos/química , Ácidos Graxos/metabolismo , Processos Heterotróficos , Concentração de Íons de Hidrogênio , Cinética , Microalgas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...