Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Eur J Pharm Sci ; 181: 106364, 2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36563915

RESUMO

Multidrug resistance-associated protein 1 (MRP1/ABCC1) is an efflux transporter responsible for the extrusion of endogenous substances as well as xenobiotics and their respective metabolites. Its high expression levels in lung tissue imply a key role in pulmonary drug disposition. Moreover, its association with inflammatory lung diseases underline MRP1's relevance in drug development and precision-medicine. With the aim to develop a tool to better understand MRP1's role in drug disposition and lung disease, we generated an ABCC1-/- clone based on the human distal lung epithelial cell line NCI-H441 via a targeted CRISPR/Cas9 approach. Successful knockout (KO) of MRP1 was confirmed by qPCR, immunoblot and Sanger sequencing. To assess potential compensatory upregulation of transporters with a similar substrate recognition pattern as MRP1, expression levels of MRP2-9 as well as OAT1-4, 6, 7 and 10 were measured. Functional transporter activity was determined via release studies with two prodrug/substrate pairs, i.e. 5(6)-carboxyfluorescein (CF; formed from its diacetate prodrug) and S-(6-(7-methylpurinyl))glutathione (MPG; formed from its prodrug 6-bromo-7-methylpurine, BMP), respectively. Lastly, transepithelial electrical resistance (TEER) of monolayers of the KO clone were compared with wildtype (WT) NCI-H441 cells. Of eight initially generated clones, the M2 titled clone showed complete absence of mRNA and protein in accordance with the designed genome edit. In transport studies using the substrate CF, however, no differences between the KO clone and WT NCI-H441 cells were observed, whilst no differences in expression of potential compensatory transporters was noted. On the other hand, when using BMP/MPG, the release of MPG was reduced to 11.5% in the KO clone. Based on these results, CF appears to be a suboptimal probe for the study of MRP1 function, particularly in organotypic in vitro and ex vivo models. Our ABCC1-/- NCI-H441 clone further retained the ability to form electrically tight barriers, making it a useful model to study MRP1 function in vitro.


Assuntos
Pró-Fármacos , Humanos , Pró-Fármacos/metabolismo , Proteínas Associadas à Resistência a Múltiplos Medicamentos/genética , Proteínas Associadas à Resistência a Múltiplos Medicamentos/metabolismo , Linhagem Celular , Pulmão/metabolismo
2.
J Control Release ; 349: 109-117, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35798092

RESUMO

P-glycoprotein (P-gp) and breast cancer resistance protein (BCRP) are two efflux transporters which are expressed in the apical (i.e. airway lumen-facing) membranes of lung epithelial cells. To assess the influence of P-gp and BCRP on the pulmonary disposition of inhaled drugs, we performed positron emission tomography (PET) imaging in rats after intratracheal aerosolization of two model P-gp/BCRP substrate radiotracers (i.e. [11C]erlotinib and [11C]tariquidar). We studied rat groups in which both transporters were active (i.e. wild-type rats), either of the two transporters was inactive (Abcb1a/b(-/-) and Abcg2(-/-) rats) or both transporters were inactive (Abcg2(-/-) rats in which pulmonary P-gp activity was inhibited by treatment with unlabeled tariquidar). PET-measured lung distribution data were compared with brain-to-plasma radioactivity concentration ratios measured in a gamma counter at the end of the PET scan. For [11C]erlotinib, lung exposure (AUClungs) was moderately but not significantly increased in Abcb1a/b(-/-) rats (1.6-fold) and Abcg2(-/-) rats (1.5-fold), and markedly (3.6-fold, p < 0.0001) increased in tariquidar-treated Abcg2(-/-) rats, compared to wild-type rats. Similarly, the brain uptake of [11C]erlotinib was substantially (4.5-fold, p < 0.0001) increased when both P-gp and BCRP activities were impaired. For [11C]tariquidar, differences in AUClungs between groups pointed into a similar direction as for [11C]erlotinib, but were less pronounced and lacked statistical significance. Our study demonstrates functional P-gp and BCRP activity in vivo in the lungs and further suggests functional redundancy between P-gp and BCRP in limiting the pulmonary uptake of a model P-gp/BCRP substrate, analogous to the blood-brain barrier. Our results suggest that pulmonary efflux transporters are important for the efficacy and safety of inhaled drugs and that their modulation may be exploited in order to improve the pharmacokinetic and pharmacodynamic performance of pulmonary delivered drugs.


Assuntos
Membro 1 da Subfamília B de Cassetes de Ligação de ATP , Proteínas de Neoplasias , Subfamília B de Transportador de Cassetes de Ligação de ATP/metabolismo , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/metabolismo , Transportadores de Cassetes de Ligação de ATP/metabolismo , Animais , Barreira Hematoencefálica/metabolismo , Encéfalo/metabolismo , Cloridrato de Erlotinib , Pulmão/diagnóstico por imagem , Pulmão/metabolismo , Proteínas de Neoplasias/metabolismo , Tomografia por Emissão de Pósitrons/métodos , Ratos
3.
Eur J Pharm Sci ; 175: 106236, 2022 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-35710078

RESUMO

Current pathophysiological findings indicate that damage to the alveolar epithelium plays a decisive role in the development of idiopathic pulmonary fibrosis (IPF). The available pharmacological interventions (i.e., oral pirfenidone and nintedanib) only slow down progression of the disease, but do not offer a cure. In order to develop new drug candidates, the pathophysiology of IPF needs to be better understood on a molecular level. It has previously been reported that a loss of caveolin-1 (Cav-1) contributes to profibrotic processes by causing reduced alveolar barrier function and fibrosis-like alterations of the lung-parenchyma. Conversely, overexpression of caveolin-1 appears to counteract the development of fibrosis by inhibiting the inflammasome NLRP3 and the associated expression of interleukin-1ß. In this study, the interaction between Fyn-kinase and caveolin-1 in the alveolar epithelium of various bleomycin (BLM)/TGF-ß damage models using precision-cut lung slices (PCLS), wildtype (WT) and caveolin-1 knockout (KO) mice as well as the human NCI-H441 cell line, were investigated. In WT mouse lung tissues, strong signals for Fyn-kinase were detected in alveolar epithelial type I cells, whereas in caveolin-1 KO animals, expression shifted to alveolar epithelial type II cells. Caveolin-1 and Fyn-kinase were found to be co-localized in isolated lipid rafts of NCI-H441 cell membrane fractions. These findings were corroborated by co-immunoprecipitation studies in which a co-localization of Cav-1 and Fyn-kinase was detected in the cell membrane of the alveolar epithelium. After TGF-ß and BLM-induced damage to the alveolar epithelium both in PCLS and cell culture experiments, a decrease in caveolin-1 and Fyn-kinase was found. Furthermore, TEER (transepithelial electrical resistance) measurements indicated that TGF-ß and BLM have a damaging effect on cell-cell contacts and thus impair the barrier function in NCI-H441 cell monolayers. This effect was attenuated after co-incubation with the Fyn-kinase inhibitor, PP-2. Our data suggest an involvement of Fyn-kinase and caveolin-1 in TGF-ß/bleomycin-induced impairment of alveolar barrier function and thus a possible role in the early stages of pulmonary fibrosis. Fyn-kinase and/or its complex with caveolin-1 might, therefore, be novel therapeutic targets in IPF.


Assuntos
Células Epiteliais Alveolares , Caveolina 1 , Fibrose Pulmonar Idiopática , Proteínas Proto-Oncogênicas c-fyn , Células Epiteliais Alveolares/metabolismo , Células Epiteliais Alveolares/patologia , Animais , Bleomicina/farmacologia , Caveolina 1/metabolismo , Fibrose , Fibrose Pulmonar Idiopática/induzido quimicamente , Fibrose Pulmonar Idiopática/tratamento farmacológico , Fibrose Pulmonar Idiopática/metabolismo , Fibrose Pulmonar Idiopática/patologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas Proto-Oncogênicas c-fyn/metabolismo , Fator de Crescimento Transformador beta/metabolismo
4.
Nat Prod Res ; 36(17): 4475-4481, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34618614

RESUMO

Baru nuts (Dipteryx alata Vog.) are a native species from Brazil, rich in phenols and other antioxidants, with high socioeconomic value and possible pharmaceutical applications. Here we investigated baru nut ethanolic extract (BNEE) antioxidant and wound healing activities in human NCI-H441 and A549 lung epithelial cell lines for a possible use in conditions related to oxidative stress and wound healing impairments, such as chronic obstructive pulmonary disease (COPD). BNEE was characterised with high DPPH free radical scavenging activity and high total phenolics content, amongst them gallic acid, that was identified and quantified by HPLC. BNEE was not cytotoxic at concentrations studied, reduced the levels of reactive oxygen species before and during oxidative stress and increased wound healing in cell monolayers. These are the first steps to investigate the beneficial properties of baru in diseases related to oxidative stress and wound healing impairments such as COPD.


Assuntos
Dipteryx , Doença Pulmonar Obstrutiva Crônica , Antioxidantes/análise , Antioxidantes/farmacologia , Dipteryx/química , Células Epiteliais , Humanos , Pulmão , Nozes/química , Fenóis/análise , Fenóis/farmacologia , Extratos Vegetais/análise , Extratos Vegetais/farmacologia , Doença Pulmonar Obstrutiva Crônica/tratamento farmacológico , Cicatrização
5.
J Control Release ; 342: 44-52, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34971693

RESUMO

Several drugs approved for inhalation for the treatment of pulmonary diseases are substrates of the adenosine triphosphate-binding cassette (ABC) transporter P-glycoprotein (P-gp). P-gp is expressed in the apical membrane of pulmonary epithelial cells and could play a role in modulating the pulmonary absorption and distribution of inhaled drugs, thereby potentially contributing to variability in therapeutic response and/or systemic side effects. We developed a new in vivo experimental approach to assess the functional impact of P-gp on the pulmonary delivery of inhaled drugs in rats. By using positron emission tomography (PET) imaging, we measured the intrapulmonary pharmacokinetics of the model P-gp substrates (R)-[11C]verapamil ([11C]VPM) and [11C]-N-desmethyl-loperamide ([11C]dLOP) administered by intratracheal aerosolization in three rat groups: wild-type, Abcb1a/b(-/-) and wild-type treated with the P-gp inhibitor tariquidar. Lung exposure (AUClung_right) to [11C]VPM was 64% and 50% lower (p < 0.05) in tariquidar-treated and in Abcb1a/b(-/-) rats, respectively, compared to untreated wild-type rats. For [11C]dLOP, AUClung_right was 59% and 34% lower (p < 0.05) in tariquidar-treated and in Abcb1a/b(-/-) rats, respectively. Our results show that P-gp can affect the pulmonary disposition of inhaled P-gp substrates, whereby a decrease in P-gp activity may lead to lower lung exposure and potentially to a decrease in therapeutic efficacy. Our study highlights the potential of PET imaging with intratracheally aerosolized radiotracers to assess the impact of membrane transporters on pulmonary drug delivery, in rodents and potentially also in humans.


Assuntos
Membro 1 da Subfamília B de Cassetes de Ligação de ATP , Barreira Hematoencefálica , Subfamília B de Transportador de Cassetes de Ligação de ATP/metabolismo , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Animais , Barreira Hematoencefálica/metabolismo , Pulmão/diagnóstico por imagem , Pulmão/metabolismo , Tomografia por Emissão de Pósitrons/métodos , Ratos
6.
Adv Drug Deliv Rev ; 177: 113862, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34256080

RESUMO

Oral inhalation results in pulmonary drug targeting and thereby reduces systemic side effects, making it the preferred means of drug delivery for the treatment of respiratory disorders such as asthma, chronic obstructive pulmonary disease or cystic fibrosis. In addition, the high alveolar surface area, relatively low enzymatic activity and rich blood supply of the distal airspaces offer a promising pathway to the systemic circulation. This is particularly advantageous when a rapid onset of pharmacological action is desired or when the drug is suffering from stability issues or poor biopharmaceutical performance following oral administration. Several cell and tissue-based in vitro and ex vivo models have been developed over the years, with the intention to realistically mimic pulmonary biological barriers. It is the aim of this review to critically discuss the available models regarding their advantages and limitations and to elaborate further which biopharmaceutical questions can and cannot be answered using the existing models.


Assuntos
Pulmão/metabolismo , Modelos Biológicos , Preparações Farmacêuticas/administração & dosagem , Administração por Inalação , Aerossóis/administração & dosagem , Animais , Pesquisa Biomédica , Células Epiteliais , Humanos , Pulmão/citologia
7.
Int J Mol Sci ; 21(23)2020 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-33271927

RESUMO

Organic cation transporters (OCT) 1, 2 and 3 and novel organic cation transporters (OCTN) 1 and 2 of the solute carrier 22 (SLC22) family are involved in the cellular transport of endogenous compounds such as neurotransmitters, l-carnitine and ergothioneine. OCT/Ns have also been implicated in the transport of xenobiotics across various biological barriers, for example biguanides and histamine receptor antagonists. In addition, several drugs used in the treatment of respiratory disorders are cations at physiological pH and potential substrates of OCT/Ns. OCT/Ns may also be associated with the development of chronic lung diseases such as allergic asthma and chronic obstructive pulmonary disease (COPD) and, thus, are possible new drug targets. As part of the Special Issue "Physiology, Biochemistry and Pharmacology of Transporters for Organic Cations", this review provides an overview of recent findings on the (patho)physiological and pharmacological functions of organic cation transporters in the lung.


Assuntos
Pulmão/metabolismo , Proteínas de Transporte de Cátions Orgânicos/metabolismo , Mucosa Respiratória/metabolismo , Animais , Transporte Biológico , Suscetibilidade a Doenças , Expressão Gênica , Homeostase , Humanos , Pulmão/efeitos dos fármacos , Isoformas de Proteínas
8.
Front Bioeng Biotechnol ; 8: 1030, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33015009

RESUMO

Multidrug resistance-associated protein-1 (MRP1/ABCC1) is highly expressed in human lung tissues. Recent studies suggest that it significantly affects the pulmonary disposition of its substrates, both after pulmonary and systemic administration. To better understand the molecular mechanisms involved, we studied the expression, subcellular localization and activity of MRP1 in freshly isolated human alveolar epithelial type 2 (AT2) and type 1-like (AT1-like) cells in primary culture, and in the NCI-H441 cell line. Moreover, the effect of cigarette smoke extract (CSE) and a series of inhaled drugs on MRP1 abundance and activity was investigated in vitro. MRP1 expression levels were measured by q-PCR and immunoblot in AT2 and AT1-like cells from different donors and in several passages of the NCI-H441 cell line. The subcellular localization of the transporter was studied by confocal laser scanning microscopy and cell surface protein biotinylation. MRP1 activity was assessed by bidirectional transport and efflux experiments using the MRP1 substrate, 5(6)-carboxyfluorescein [CF; formed intracellularly from 5(6)-carboxyfluorescein-diacetate (CFDA)] in AT1-like and NCI-H441 cell monolayers. Furthermore, the effect of CSE as well as several bronchodilators and inhaled corticosteroids on MRP1 abundance and CF efflux was investigated. MRP1 protein abundance increased upon differentiation from AT2 to AT1-like phenotype, however, ABCC1 gene levels remained unchanged. MRP1 abundance in NCI-H441 cells were comparable to those found in AT1-like cells. The transporter was detected primarily in basolateral membranes of both cell types which was consistent with net basolateral efflux of CF. Likewise, bidirectional transport studies showed net apical-to-basolateral transport of CF which was sensitive to the MRP1 inhibitor MK-571. Budesonide, beclomethasone dipropionate, salbutamol sulfate, and CSE decreased CF efflux in a concentration-dependent manner. Interestingly, CSE increased MRP1 abundance, whereas budesonide, beclomethasone dipropionate, salbutamol sulfate did not have such effect. CSE and inhaled drugs can reduce MRP1 activity in vitro, which implies the transporter being a potential drug target in the treatment of chronic obstructive pulmonary disease (COPD). Moreover, MRP1 expression level, localization and activity were comparable in human AT1-like and NCI-H441 cells. Therefore, the cell line can be a useful alternative in vitro model to study MRP1 in distal lung epithelium.

9.
J Nucl Med ; 61(11): 1650-1657, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32284394

RESUMO

Multidrug resistance-associated protein 1 (adenosine triphosphate-binding cassette subfamily C member 1 [ABCC1]) is abundantly expressed at the lung epithelial barrier, where it may influence the pulmonary disposition of inhaled drugs and contribute to variability in therapeutic response. The aim of this study was to assess the impact of ABCC1 on the pulmonary disposition of 6-bromo-7-11C-methylpurine (11C-BMP), a prodrug radiotracer that is intracellularly conjugated with glutathione to form the ABCC1 substrate S-(6-(7-11C-methylpurinyl))glutathione (11C-MPG). Methods: Groups of Abcc1(-/-) rats, wild-type rats pretreated with the ABCC1 inhibitor MK571, and wild-type control rats underwent dynamic PET scans after administration of 11C-BMP intravenously or by intratracheal aerosolization. In vitro transport experiments were performed with unlabeled BMP on the human distal lung epithelial cell line NCI-H441. Results: The pulmonary kinetics of radioactivity significantly differed between wild-type and Abcc1(-/-) rats, but differences were more pronounced after intratracheal than after intravenous administration. After intravenous administration, lung exposure (area under the lung time-activity curve from 0 to 80 min after radiotracer administration [AUClung]) was 77% higher and the elimination slope of radioactivity washout from the lungs (kE,lung) was 70% lower in Abcc1(-/-) rats, whereas after intratracheal administration, AUClung was 352% higher and kE,lung was 86% lower in Abcc1(-/-) rats. Pretreatment with MK571 decreased kE,lung by 20% after intratracheal radiotracer administration. Intracellular accumulation of MPG in NCI-H441 cells was significantly higher and extracellular efflux was lower in the presence than in the absence of MK571. Conclusion: PET with pulmonary administered 11C-BMP can measure ABCC1 activity at the lung epithelial barrier and may be applicable in humans to assess the effects of disease, genetic polymorphisms, or concomitant drug intake on pulmonary ABCC1 activity.


Assuntos
Radioisótopos de Carbono/farmacocinética , Pulmão/metabolismo , Proteínas Associadas à Resistência a Múltiplos Medicamentos/metabolismo , Purinas/farmacocinética , Animais , Células Cultivadas , Feminino , Humanos , Tomografia por Emissão de Pósitrons , Propionatos/farmacologia , Quinolinas/farmacologia , Ratos , Ratos Sprague-Dawley
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...