Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PNAS Nexus ; 3(5): pgae170, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38745567

RESUMO

Lack of nitrogen limits food production in poor countries while excessive nitrogen use in industrial countries has led to transgression of the planetary boundary. However, the potential of spatial redistribution of nitrogen input for food security when returning to the safe boundary has not been quantified in a robust manner. Using an emulator of a global gridded crop model ensemble, we found that redistribution of current nitrogen input to major cereals among countries can double production in the most food-insecure countries, while increasing global production of these crops by 12% with no notable regional loss or reducing the nitrogen input to the current production by one-third. Redistribution of the input within the boundary increased production by 6-8% compared to the current relative distribution, increasing production in the food-insecure countries by two-thirds. Our findings provide georeferenced guidelines for redistributing nitrogen use to enhance food security while safeguarding the planet.

2.
Environ Monit Assess ; 195(4): 493, 2023 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-36943535

RESUMO

Land use configuration in any given landscape is the result of a multi-objective optimization process, which takes into account different ecological, economic, and social factors. In this process, coordinating stakeholders is a key factor to successful spatial land use optimization. Stakeholders need to be modeled as players who have the ability to interact with each other towards their best solution, while considering multiple goals and constraints at the same time. Game theory provides a tool for land use planners to model and analyze such interactions. In order to apply the spatial allocation model and address stakeholder conflicts, an integrated model based on linear programming and game theory was designed in this study. For implementing such model, we conducted an optimal land use allocation process through multi-objective land allocation (MOLA) and linear programming methods. Then, two groups of environmental and land development players were considered to implement the optimization model. The game algorithm was used to select the appropriate constraint so that the result would be acceptable to all stakeholders. The results showed that during the third round of the game, the decision-making process and the optimization of land uses reached the desired Nash Equilibrium state and the conflict between stakeholders was resolved. Ultimately, in order to localize the results, a suitable solution was presented in a GIS environment.


Assuntos
Teoria dos Jogos , Modelos Teóricos , Programação Linear , Monitoramento Ambiental , Algoritmos
3.
Environ Monit Assess ; 192(7): 412, 2020 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-32495152

RESUMO

Green space and its spatial formation are important elements of public welfare in urban environments and green ecosystems in big cities largely contribute to the mental and physical health of citizens. Tehran is Iran's biggest and most polluted city and air pollution in this city causes loss of human lives due to respiratory diseases. The effect of green area has been less studied in former researches in Tehran, and the reducing effects of green landscape on the mortality of respiratory diseases have not yet been evaluated. To measure the effects of green area landscape patterns (fragmentation, area-edge, shape, and aggregation) on public health, the current study evaluated the pathways and effects of green space on air pollution and the mortality of respiratory diseases using structural equation modeling approach and the partial least squares method. The results of the study indicated green space has a significant mitigating effect on air pollution and mortality of respiratory diseases and also air pollution has a meaningful increasing effect on mortality due to respiratory diseases in Tehran. The most important latent variable in green space is class area that indicates more area of green space is correlated with less mortality of respiratory diseases. The most important indicator of air pollution was the PM2.5 that needs to be considered and controlled by urban policymakers. Accordingly, maximizing the green area and its cohesion and minimizing fragmentation and green patch edge can contribute to a reduction in air pollution and consequently lower mortality of citizens.


Assuntos
Monitoramento Ambiental , Modelos Teóricos , Material Particulado , Transtornos Respiratórios , Cidades/estatística & dados numéricos , Ecossistema , Monitoramento Ambiental/métodos , Humanos , Irã (Geográfico) , Material Particulado/análise , Material Particulado/toxicidade , Transtornos Respiratórios/induzido quimicamente , Transtornos Respiratórios/mortalidade
4.
Environ Monit Assess ; 189(4): 163, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28293814

RESUMO

A hierarchical intensity analysis of land-use change is applied to evaluate the dynamics of a coupled urban coastal system in Rasht County, Iran. Temporal land-use layers of 1987, 1999, and 2011 are employed, while spatial accuracy metrics are only available for 2011 data (overall accuracy of 94%). The errors in 1987 and 1999 layers are unknown, which can influence the accuracy of temporal change information. Such data were employed to examine the size and the type of errors that could justify deviations from uniform change intensities. Accordingly, errors comprising 3.31 and 7.47% of 1999 and 2011 maps, respectively, could explain all differences from uniform gains and errors including 5.21 and 1.81% of 1987 and 1999 maps, respectively, could explain all deviations from uniform losses. Additional historical information is also applied for uncertainty assessment and to separate probable map errors from actual land-use changes. In this regard, historical processes in Rasht County can explain different types of transition that are either consistent or inconsistent to known processes. The intensity analysis assisted in identification of systematic transitions and detection of competitive categories, which cannot be investigated through conventional change detection methods. Based on results, built-up area is the most active gaining category in the area and wetland category with less areal extent is more sensitive to intense land-use change processes. Uncertainty assessment results also indicated that there are no considerable classification errors in temporal land-use data and these imprecise layers can reliably provide implications for informed decision making.


Assuntos
Monitoramento Ambiental/métodos , Agricultura , Conservação dos Recursos Naturais , Sistemas de Informação Geográfica , Irã (Geográfico) , Áreas Alagadas
5.
Environ Monit Assess ; 189(2): 91, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-28144874

RESUMO

This study attempts to develop a non-path-dependent model for environmental risk management and polycentric urban land-use planning in Gorgan Township area, Iran. Applying three suitability layers of environmental risk (soil erosion, flood risk, fire risk, and land susceptibility), urbanization potential, and integrated surface (environmental risk plus urbanization potential layers), a non-path-dependent Cellular Automata-Markov Chain (CA-MC) model was configured to execute three scenarios of polycentric urban growth allocation. Specifically, the modeling approach improved the traditional functionality of the CA-MC model from a prediction algorithm into an innovative land allocation tool. Besides, due to its flexibility, the non-path-dependent model was able to explicitly include different characteristics of the landscape structure ranging from physical land attributes to landscape functions and processes (natural hazards). Accordingly, three polycentric urban growth allocation efforts were undertaken and compared in terms of connectivity and compactness of the resultant patterns and consumption of other land resources. Based on results, the polycentric allocation procedure based on integrated suitability layer produced a more manageable pattern of urban landscape, while the growth option based on environmental risk layer was more successful for protecting farmlands against excessive urbanization. This study suggests that polycentric urban land-use planning under the strategy of rural land development programs is an available option for designing an urban landscape with lower exposure to natural hazards and more economic benefits to rural residents. Finally, the non-path-dependent modeling is a recommended approach, when highly flexible and interactive decision-support systems as well as trend-breaking scenarios are desired.


Assuntos
Algoritmos , Planejamento de Cidades , Monitoramento Ambiental , Urbanização , Ecossistema , Incêndios , Inundações , Mapeamento Geográfico , Irã (Geográfico) , Cadeias de Markov , Risco , Análise Espaço-Temporal
6.
Environ Monit Assess ; 188(11): 633, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27771873

RESUMO

Continuous surface of urbanization suitability, as an input to many urban growth models (UGM), has a significant role on a proper calibration process. The present study evaluates and compares the simulation success of the Cellular Automata-Markov Chain (CA-MC) model through multiple methods. For this, a series of mapping algorithms are applied ranging from empirical methods such as multi-criteria evaluation (MCE) to statistical algorithms without spatially explicit suitability mapping rules such as logistic regression (LR) and multi-layer perceptron (MLP) neural network and finally statistical and spatially explicit rule-based methods such as SLEUTH-Genetic Algorithm (SLEUTH-GA) model. The CA-MC model was calibrated in three study locations including Azadshahr, Gonbad, and Gorgan cities in northeastern Iran. Applying Kappa-based indices (Kappa, K location, K Simulation, and K Transloc) and computing relative error (RE) values of landscape metrics, performance of the model was quantified and compared across the three study sites. The MCE and SLEUTH-GA methods, as the most data-demanding and the most computationally complex methods, respectively, yielded approximately similar results (especially in case of Kappa-based indices) and these methods were less successful compared to LR and MLP models. LR and MLP models were less data-demanding, while they produced approximately equal results. This study concludes that, when historical growth patterns feed an urbanization suitability mapping process, neither rules (SLEUTH-GA) nor layers (MCE) are effectively efficient when applied in a separated manner. Instead, methods with statistical rules and least-correlated input layers (LR and MLP) provide better simulation outputs. In contrast, methods such as MCE are more applicable when a non-path-dependent mapping procedure is desired since this method does not require training data (dependent variable) and the provided flexibilities in urbanization suitability mapping under various scenarios can improve the functionality of land-use change prediction algorithms into innovative land allocation tools.


Assuntos
Modelos Teóricos , Urbanização , Algoritmos , Calibragem , Cidades , Simulação por Computador , Irã (Geográfico) , Modelos Logísticos , Redes Neurais de Computação
7.
Environ Monit Assess ; 188(4): 205, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26935736

RESUMO

The present study compares the effectiveness of two common preclassification change detection (CD) methods that use two-dimensional data space of spectral-textural (S-T) change information. The methods are principal component analysis (PCA) and change vector analysis (CVA) in the Gorgan Township area, Golestn Province, Iran. A series of texture-based information was calculated mainly to separate those land use/land cover (LULC) conversions that are spectrally indistinguishable and also to provide a basis for automatic classification of S-T data space. Both methods were evaluated in terms of accuracy and the required time and expertise. Having the two-dimensional S-T data space generated, support vector machine (SVM) classifier was implemented to automatically extract changed pixels and the receiving operator characteristic (ROC) was employed to assess the accuracy of the output. According to the results, the study area has witnessed substantial mutual transformations between various LULCs among agricultural lands were the most dynamic category in the region. The PCA method applied to the S-T information achieved a ROC of 0.90-indicating an acceptable performance-while the S-T CVA method achieved a lower value of 0.75. The S-T PCA method was considerably less time-consuming and less expertise demanding as well as more accurate in our study area.


Assuntos
Agricultura/estatística & dados numéricos , Monitoramento Ambiental/métodos , Irã (Geográfico) , Análise de Componente Principal , Máquina de Vetores de Suporte
8.
Environ Monit Assess ; 188(3): 169, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26884356

RESUMO

Performance evaluation is a critical step when developing land-use and cover change (LUCC) models. The present study proposes a spatially explicit model performance evaluation method, adopting a landscape metric-based approach. To quantify GEOMOD model performance, a set of composition- and configuration-based landscape metrics including number of patches, edge density, mean Euclidean nearest neighbor distance, largest patch index, class area, landscape shape index, and splitting index were employed. The model takes advantage of three decision rules including neighborhood effect, persistence of change direction, and urbanization suitability values. According to the results, while class area, largest patch index, and splitting indices demonstrated insignificant differences between spatial pattern of ground truth and simulated layers, there was a considerable inconsistency between simulation results and real dataset in terms of the remaining metrics. Specifically, simulation outputs were simplistic and the model tended to underestimate number of developed patches by producing a more compact landscape. Landscape-metric-based performance evaluation produces more detailed information (compared to conventional indices such as the Kappa index and overall accuracy) on the model's behavior in replicating spatial heterogeneity features of a landscape such as frequency, fragmentation, isolation, and density. Finally, as the main characteristic of the proposed method, landscape metrics employ the maximum potential of observed and simulated layers for a performance evaluation procedure, provide a basis for more robust interpretation of a calibration process, and also deepen modeler insight into the main strengths and pitfalls of a specific land-use change model when simulating a spatiotemporal phenomenon.


Assuntos
Simulação por Computador , Monitoramento Ambiental/métodos , Modelos Estatísticos , Urbanização/tendências
9.
Environ Sci Pollut Res Int ; 22(7): 4985-5002, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25395322

RESUMO

Increasing land utilization through diverse forms of human activities, such as agriculture, forestry, urban growth, and industrial development, has led to negative impacts on the water quality of rivers. To find out how catchment attributes, such as land use, hydrologic soil groups, and lithology, can affect water quality variables (Ca(2+), Mg(2+), Na(+), Cl(-), HCO 3 (-) , pH, TDS, EC, SAR), a spatio-statistical approach was applied to 23 catchments in southern basins of the Caspian Sea. All input data layers (digital maps of land use, soil, and lithology) were prepared using geographic information system (GIS) and spatial analysis. Relationships between water quality variables and catchment attributes were then examined by Spearman rank correlation tests and multiple linear regression. Stepwise approach-based multiple linear regressions were developed to examine the relationship between catchment attributes and water quality variables. The areas (%) of marl, tuff, or diorite, as well as those of good-quality rangeland and bare land had negative effects on all water quality variables, while those of basalt, forest land cover were found to contribute to improved river water quality. Moreover, lithological variables showed the greatest most potential for predicting the mean concentration values of water quality variables, and noting that measure of EC and TDS have inversely associated with area (%) of urban land use.


Assuntos
Monitoramento Ambiental/métodos , Modelos Teóricos , Rios , Movimentos da Água , Qualidade da Água , Agricultura , Sistemas de Informação Geográfica , Humanos , Hidrologia , Oceanos e Mares , Solo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...