Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 123
Filtrar
1.
Mol Genet Metab Rep ; 39: 101079, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38601121

RESUMO

As a standard therapy for Fabry disease, enzyme replacement therapy (ERT) with recombinant human α-galactosidase A (α-Gal) has been successfully used, and the instructions for this drug state that "it should not be co-administrated with cationic amphiphilic drugs such as hydroxychloroquine (HCQ) and amiodarone (AMI), since these drugs have the potential to inhibit intracellular α-Gal activity". However, there would be cases in which HCQ or AMI is required for patients with Fabry disease, considering their medical efficacy and application. Thus, we examined the impact of HCQ/AMI on recombinant human α-Gal by in vitro, cellular, and animal experiments. The results revealed that HCQ/AMI affected the enzyme activity of α-Gal incorporated into cultured fibroblasts from a Fabry mouse when the cells were cultured in medium containing these drugs and the enzyme, although their direct inhibitory effect on the enzyme is not strong. These lysosomotropic drugs may be trapped and concentrated in lysosomes, followed by inhibition of α-Gal. On the other hand, no reduction of α-Gal activity incorporated into the organs and tissues, or acceleration of glycoshingolipid accumulation was observed in Fabry mice co-administered with HCQ/AMI and the enzyme, compared with in the case of usual ERT. As HCQ/AMI administered are catabolized in the liver, these drugs possibly do not affect ERT for Fabry mice, different from in the case of cultured cells in an environment isolated from the surroundings.

2.
CEN Case Rep ; 2023 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-38135868

RESUMO

Fabry disease is an X-linked hereditary disorder caused by deficient α-galactosidase A (GLA) activity. Patients with Fabry disease are often treated with enzyme replacement therapy (ERT). However, ERT often induces the formation of neutralizing antidrug antibodies (ADAs), which may impair the therapeutic efficacy. Here, we report the case of a 32-year-old man with Fabry disease and resultant neutralizing ADAs who was treated by switching from agalsidase-α to agalsidase-ß. We monitored biomarkers, such as plasma globotriaosylsphingosine (lyso-Gb3), urinary globotriaosylceramide (Gb3), urinary mulberry bodies, renal and cardiac parameters, and disease severity during the treatment period. Although plasma lyso-Gb3 and urinary Gb3 levels quickly decreased within two months after the initiation of ERT with agalsidase-α, they gradually increased thereafter. The urinary mulberry bodies continued to appear. Both the ADA titer and serum mediated GLA inhibition rates started to increase after two months. Moreover, 3.5 years after ERT, the vacuolated podocyte area in the renal biopsy decreased slightly from 23.1 to 18.9%. However, plasma lyso-Gb3 levels increased, and urinary Gb3, mulberry body levels, and ADA titers remained high. Therefore, we switched to agalsidase-ß which reduced, but did not normalize, plasma lyso-Gb3 levels and stabilized renal and cardiac parameters. Disease severity was attenuated. However, urinary Gb3 and mulberry body levels did not decrease noticeably in the presence of high ADA titers. The kidneys take up a small amount of the administered recombinant enzyme, and the clearance of Gb3 that has accumulated in the kidney may be limited despite the switching from agalsidase-α to agalsidase-ß.

3.
Intern Med ; 2023 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-37866916

RESUMO

Objectives Fabry disease is characterized by the systemic accumulation of globotriaosylceramide (Gb3) and globotriaosylsphingosine (Lyso-Gb3), which are widely used as biomarkers of the disease. However, few reports have described the relationship of Lyso-Gb3 analogs and Gb3 isoforms with the disease. The present study determined the profiles of Lyso-Gb3 analogs and Gb3 isoforms accumulated in body fluids from various phenotypic Fabry patients to elucidate the basis of the disease. Methods Plasma Lyso-Gb3 and related analogs were measured in 15 classic Fabry men, 6 later-onset Fabry men, 11 Fabry women, and 36 controls, while urinary Gb3 isoforms were measured in 5 classic Fabry men, 5 later-onset Fabry men, 17 Fabry women, and 11 controls, using liquid chromatography-tandem mass spectrometry (LC-MS/MS). Furthermore, these values were monitored for a classic Fabry man, in whom neutralizing anti-drug antibodies had developed following enzyme replacement therapy (ERT). Results The levels of plasma Lyso-Gb3 analogs/urinary Gb3 isoforms were higher in Fabry patients than in controls, especially in classic Fabry men. However, minor differences in the ratio of each Lyso-Gb3 analog and Gb3 isoform with respect to the total Lyso-Gb3 analogs and Gb3 isoforms, respectively, were observed among individual classic Fabry men. Their time courses were well associated with the development and attenuation of anti-drug antibodies in a patient with classic Fabry disease during ERT. Conclusion Quantification of Lyso-Gb3 analogs and Gb3 isoforms provides us with more detailed information about the substrates that accumulated in the body fluids of Fabry patients than does quantification of Lyso-Gb3 and Gb3 alone, so this approach may be useful for elucidating the basis of Fabry disease.

4.
Cell Transplant ; 32: 9636897231173734, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37183961

RESUMO

Human induced pluripotent stem cells (iPSCs) have already been used in transplantation therapies. Currently, cells from healthy people are transplanted into patients with diseases. With the rapid evolution of genome editing technology, genetic modification could be applied to enhance the therapeutic effects of iPSCs, such as the introduction of secreted molecules to make the cells a drug delivery system. Here, we addressed this possibility by utilizing a Fabry disease mouse model, as a proof of concept. Fabry disease is caused by the lack of α-galactosidase A (GLA). We previously developed an immunotolerant therapeutic molecule, modified α-N-acetylgalactosaminidase (mNAGA). We confirmed that secreted mNAGA from genome-edited iPSCs compensated for the GLA activity in GLA-deficient cells using an in vitro co-culture system. Moreover, iPSCs transplanted into Fabry model mice secreted mNAGA and supplied GLA activity to the liver. This study demonstrates the great potential of genome-edited iPSCs secreting therapeutic molecules.


Assuntos
Doença de Fabry , Células-Tronco Pluripotentes Induzidas , Humanos , Animais , Camundongos , Doença de Fabry/terapia , Doença de Fabry/tratamento farmacológico , Edição de Genes , alfa-Galactosidase/genética , Modelos Animais de Doenças
5.
CEN Case Rep ; 12(2): 171-175, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36205882

RESUMO

We monitored anti-drug antibodies and disease-specific biomarkers in three patients with a nonsense mutation from a Japanese Fabry family treated with enzyme replacement therapy (ERT). In two male patients from the family, neutralizing anti-drug antibodies were induced at an early stage of ERT, the antibody titer peak being found at an earlier stage of ERT in the patient treated with 1.0 mg/kg agalsidase beta than in that treated with 0.2 mg/kg agalsidase alfa. Then, the antibody titers decreased with continuation of ERT. The formation of neutralizing anti-drug antibodies adversely affected the plasma globotriaosylsphingosine (Lyso-Gb3) level and urinary globotriaosylceramide (Gb3) excretion in both patients, the impact being greater in the patient treated with 0.2 mg/kg agalsidase alfa than in that treated with 1.0 mg/kg agalsidase beta. The difference might be explained by the different doses of the infused enzymes based on supersaturation of the antibodies. In a heterozygous Fabry female from the family, no sign of antibody formation was found, and both the plasma Lyso-Gb3 level and urinary Gb3 excretion, which were moderately increased at the baseline, decreased gradually. No deterioration of the manifestations or laboratory findings was observed during ERT in either of the patients. Thus, monitoring of anti-drug antibodies and biomarkers in these Fabry patients provided us with important information on their pathological condition during ERT.


Assuntos
Doença de Fabry , Humanos , Masculino , Feminino , Doença de Fabry/genética , Terapia de Reposição de Enzimas , População do Leste Asiático , Biomarcadores
7.
CEN Case Rep ; 11(1): 146-153, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34529243

RESUMO

Fabry disease (FD) is an X-linked genetic lysosomal disorder caused by alpha-galactosidase A (GLA) deficiency. Multiple myeloma (MM) predominately affects older adults, which ranks as the second commonest hematological malignancy. Their overlap has rarely been reported. We present a case of the coexistence of FD and MM in a patient. We report the case of a 68-year-old woman who was referred to our hospital for the evaluation of thoracic spine tumor with bone destruction. On admission, her serum creatinine (Cr) level was elevated to 12.70 mg/dL from the baseline value of 0.91 mg/dL. Bone marrow aspiration revealed MM. Renal biopsy showed myeloma cast nephropathy, which was the primary cause of acute kidney injury. Renal pathology also showed podocyte swelling and tubule myeloid bodies in a mosaic pattern compatible with female FD. Consequently, the patient was diagnosed as FD based on the germ line mutation in GLA. The patient was treated with bortezomib and dexamethasone therapy, which significantly improved the renal function. This is the second case demonstrating a potential pathogenic relationship between FD and MM. Since FD is one of the few genetic diseases for which there are therapeutic agents with fewer side effects, diagnostic value of FD is high. If an MM patient has multiple organ abnormalities or any familial history, the physician should suspect FD.


Assuntos
Doença de Fabry , Nefropatias , Mieloma Múltiplo , Idoso , Bortezomib/uso terapêutico , Doença de Fabry/complicações , Doença de Fabry/diagnóstico , Doença de Fabry/tratamento farmacológico , Feminino , Humanos , Rim/patologia , Nefropatias/patologia , Masculino , Mieloma Múltiplo/complicações , Mieloma Múltiplo/diagnóstico , Mieloma Múltiplo/tratamento farmacológico
8.
Cell Transplant ; 30: 9636897211060269, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34931534

RESUMO

Cell transplantation is expected to be another strategy to treat lysosomal diseases, having several advantages compared to enzyme replacement therapy, such as continuous enzyme secretion and one-time treatment to cure diseases. However, cell transplantation for lysosomal diseases holds issues to be resolved for the clinical field. In this study, we developed a new ex vivo gene therapy platform using a transplant pack, which consists of a porous membrane made of ethylene-vinyl alcohol in the pack-type and spheroids with scaffolds. These membranes have countless pores of less than 0.1 µm2 capable of secreting proteins, including alpha-galactosidase enzyme, and segregating the contents from the host immune system. When the packs were subcutaneously transplanted into the backs of green fluorescent protein (GFP) mice, no GFP-positive cells migrated to the transplanted pack in either autogenic or allogenic mice. The transplanted cells in the pack survived for 28 days after transplantation. When cells overexpressing alpha-galactosidase were used as donor cells for the packs and implanted into Fabry disease model mice, the accumulation of the alpha-galactosidase enzyme was also observed in the livers. In this study, we reported a new ex vivo therapeutic strategy combining macroencapsulation and cellular spheroids with scaffolds. This pack, macroencapsulated spheroids with scaffolds, can also be applied to other types of lysosomal diseases by modifying genes of interest.


Assuntos
Transplante de Células/métodos , Terapia de Reposição de Enzimas/métodos , Doença de Fabry/terapia , Esferoides Celulares/metabolismo , Animais , Modelos Animais de Doenças , Doença de Fabry/imunologia , Humanos , Camundongos
9.
Mol Genet Metab Rep ; 29: 100804, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34631425

RESUMO

In Fabry disease, accumulation of glycolipids, predominantly globotriaosylceramide (Gb3), affects the kidneys, and nephropathy is one of the important disorders that influence the disease severity and prognosis of patients. Urinary Gb3 has been analyzed for diagnosis and monitoring of Fabry disease. In this study, we analyzed urinary Gb3 by thin-layer chromatography (TLC)-immunostaining and liquid chromatography (LC)-tandem mass spectrometry (MS/MS). An improved qualitative method, TLC-immunostaining, revealed excessive urinary Gb3 excretion in 100 (8/8), 88 (14/16), and 74% (45/61) of the classic Fabry males, later-onset Fabry males, and Fabry females examined, respectively. This authentic method is robust, easy, economic, and hardly affected by abundant urinary sediment, and this is useful for diagnosing individual Fabry patients. LC-MS/MS can determine the level of Gb3 in urine with high sensitivity, and it revealed that the Gb3 excretion level was higher in the order of classic Fabry males, later-onset Fabry males, Fabry females, and controls, respectively, and this is expected to be a useful quantitative method not only for diagnosis but also for predicting the progression of Fabry nephropathy. As to the relation of the urinary Gb3 level and renal events, our study revealed that the urinary Gb3 level in Fabry patients experiencing renal events tended to be higher than that in ones who did not have any renal events in each phenotypic group of the disease.

11.
Nephrol Dial Transplant ; 37(1): 115-125, 2021 12 31.
Artigo em Inglês | MEDLINE | ID: mdl-34282462

RESUMO

BACKGROUND: Fabry disease (FD), an X-linked lysosomal storage disorder caused by a deficiency in alfa-galactosidase A (α-Gal A) activity due to mutations in the GLA gene, has a prevalence of 0-1.69% in patients undergoing haemodialysis; however, its prevalence in patients with chronic kidney disease (CKD) Stages 1-5 is unknown. METHODS: Serum α-Gal A activity analysis and direct sequencing of GLA were used to screen for FD in 2122 male patients with CKD, including 1703 patients with CKD Stage 5D and 419 with CKD Stages 1-5. The correlation between serum α-Gal A activity and confounding factors in patients with CKD Stages 1-5 was evaluated. RESULTS: FD prevalence rates in patients with CKD Stage 5D and CKD Stages 1-5 were 0.06% (1/1703) and 0.48% (2/419), respectively. A patient with CKD Stage 5D exhibited a novel GLA mutation, p.Met208Arg, whereas two patients with CKD Stages 1-5 had c.370delG and p.Met296Ile. p. Met208Arg caused moderate structural changes in the molecular surface region near the substituted amino acid residue but did not affect the catalytic residues Asp170 and Asp231 in α-Gal A. Serum α-Gal A activity in patients with CKD Stages 1-5 was inversely correlated with age (P < 0.0001) but directly correlated with estimated glomerular filtration rate (P < 0.0001). CONCLUSIONS: FD prevalence was much higher in male patients with CKD Stages 1-5 than in those with CKD Stage 5D. FD screening in patients with CKD Stages 1-5 may improve patient survival, decreasing the number of patients with CKD Stage 5D.


Assuntos
Doença de Fabry , Insuficiência Renal Crônica , Doença de Fabry/complicações , Doença de Fabry/diagnóstico , Doença de Fabry/epidemiologia , Humanos , Japão/epidemiologia , Masculino , Mutação , Diálise Renal , Insuficiência Renal Crônica/epidemiologia , alfa-Galactosidase/genética
12.
Nihon Yakurigaku Zasshi ; 156(4): 235-238, 2021.
Artigo em Japonês | MEDLINE | ID: mdl-34193703

RESUMO

Sandhoff disease (SD) is a genetic disorder caused by a mutation in the ß-hexosaminidase B (HexB) gene in humans. This results in the massive accumulation of GM2 gangliosides in the nervous system, causing progressive neurodegeneration. The symptoms of SD include muscle weakness, seizures, and mental illness;along with loss of muscle coordination, vision, and hearing. In the most severe form, the onset begins during early infancy, and death usually occurs within 3-5 years of age. The established animal model, Hexb-deficient (Hexb-/-) mouse, shows abnormalities that resemble the severe phenotype found in human infants. We have previously reported that activated microglia causes astrogliosis in Hexb-/- mouse at the early stage of development that can be ameliorated via immunosuppression. Moreover, within the cerebral cortices of Hexb-/- mouse, reactive astrocytes were found to express adenosine A2A receptors in later inflammatory phases. Inhibiting this receptor with istradefylline decreases the number of activated microglial cells and inflammatory cytokines/chemokines. Thus, we underline the importance of the astrocytic A2A receptor as a sensor, in regulating microglial activation in the late phase of inflammation.


Assuntos
Doença de Sandhoff , Animais , Modelos Animais de Doenças , Gliose , Hexosaminidase B , Camundongos , Camundongos Knockout , Neuroglia , Doença de Sandhoff/tratamento farmacológico , Doença de Sandhoff/genética
13.
Mol Genet Metab Rep ; 28: 100773, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34136356

RESUMO

Drug-induced lysosomal storage disease (DILSD) caused by cationic amphiphilic drugs (CADs), which exhibits toxic manifestations and pathological findings mimicking Fabry disease (α-galactosidase A deficiency), has attracted the interests of clinicians and pathologists. Although the affected region is lysosomes in both the diseases, DILSD is characterized by intralysosomal accumulation of phospholipids and Fabry disease that of globotriaosylceramide (Gb3) and globotriaosylsphingosine (Lyso-Gb3). However, it is unknown whether administration of CADs affects the catabolism of Gb3 and Lyso-Gb3 in Fabry disease. In this study, we independently administered hydroxychloroquine/amiodarone to wild-type and Fabry mice and examined the effects of the drugs on the enzyme activity and substrates accumulated in organs and tissues. The results revealed that the administration of the drugs induced accumulation of phosphatidylcholine in both the wild-type and Fabry mice. However, reduction of α-galactosidase A activity in the organs and tissues of the wild-type mice was not found, and the storage of Gb3 and Lyso-Gb3 was not accelerated by these drugs in the Fabry mice. This suggests that hydroxychloroquine/amiodarone do not have any significant impact on the catabolism of Gb3 and Lyso-Gb3 in organs and tissues of both wild-type and Fabry mice.

14.
Mol Genet Metab Rep ; 25: 100692, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33335838

RESUMO

We previously showed that the genotype-phenotype correlation in MPS II is well-conserved in Japan (Kosuga et al., 2016). Almost all of our patients with attenuated MPS II have missense variants, which is expected to result in residual activity of iduronate-2-sulfatase. In contrast, our patients with severe MPS II have so-called null-type disease-associated variants, such as nonsense variants, frame-shifts, gene insertions, gene deletions and rearrangement with pseudogene (IDS2), none of which are expected to result in residual activity. However, we recently encountered a patient with attenuated MPS II who had a presumable null-type disease-associated variant and 76-base deletion located in exon 1 that extended into intron 1. To investigate this discordance, we extracted RNA from the leukocytes of the patient and performed reverse transcription polymerase chain reaction. One of the bands of the cDNA analysis was found to include a nucleotide sequence whose transcript was expected to generate an almost full-length IDS mature peptide lacking only part of its signal peptide as well as only one amino acid at the end of the N-terminus. This suggests that an alternative splicing donor site is generated in exon 1 upstream of the deleted region. Based on these observations, we concluded that the phenotype-genotype discordance in this patient with MPS II was due to the decreased amount of IDS protein induced by the low level of the alternatively spliced mRNA, lacking part of the region coding for the signal peptide but including the region coding almost the full mature IDS protein. The first 25 amino acids at the N-terminus of IDS protein are a signal peptide. The alternative splice transcript has only 13 (1 M-13 L) of those 25 amino acids; 14G-25G are missing, suggesting that the exclusively hydrophobic 1 M-13 L of the signal peptide of IDS might have a crucial role in the signal peptide.

15.
Cell Transplant ; 29: 963689720976362, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33300391

RESUMO

Fabry disease is caused by a decrease in or loss of the activity of alpha-galactosidase, which causes its substrates globotriaosylceramide (Gb3) and globotriaosylsphingosine (lyso-Gb3) to accumulate in cells throughout the body. This accumulation results in progressive kidney injury due to glomerulosclerosis and in heart failure due to hypertrophy. Enzyme replacement therapy (ERT) has been used as the standard therapy for Fabry disease, but it causes a significant financial burden, and regular administration is inconvenient for patients. Because of the short half-life of alpha-galactosidase in vivo, therapeutic methods that can supplement or replace ERT are expected to involve continuous release of alpha-galactosidase, even at low doses. Cell transplantation therapy is one of these methods; however, its use has been hindered by the short-term survival of transplanted cells. CellSaic technology, which utilizes cell spheroids that form after cells are seeded simultaneously with a recombinant collagen peptide scaffold called a µ-piece, has been used to improve cell survival upon implantation. In this study, syngeneic murine embryonic fibroblasts were used to generate CellSaic that were transplanted into Fabry mice. These spheroids survived for 28 days in the renal subcapsular space with forming blood vessels. These results indicate CellSaic technology could be a platform to promote cellular graft survival and may facilitate the development of cell transplantation methods for lysosomal diseases.


Assuntos
Doença de Fabry/tratamento farmacológico , Doença de Fabry/terapia , Peptídeos/uso terapêutico , Animais , Colágeno/metabolismo , Terapia de Reposição de Enzimas/métodos , Humanos , Imuno-Histoquímica , Camundongos , Peptídeos/química , Ratos , Ratos Endogâmicos Lew , Triexosilceramidas/metabolismo , alfa-Galactosidase/metabolismo
16.
Mol Genet Metab Rep ; 25: 100650, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33072516

RESUMO

Enzyme replacement therapy (ERT) for Fabry disease (deficiency of α-galactosidase A, α-Gal) with recombinant α-Gals (agalsidase alfa and agalsidase beta) is widely available and improves some of the clinical manifestations and biochemical findings. However, recent reports suggest that recurrent administration of recombinant enzymes often induces the formation of anti-drug antibodies, which may have a negative impact on the outcome of the therapy. We examined the formation of anti-drug antibodies using blood samples from 97 Japanese Fabry patients following ERT and tried to characterize them by means of enzyme-linked immunosorbent assay (ELISA), serum-mediated α-Gal inhibition, and immunochromatographic (IC) assay, followed by GLA gene analysis and measurement of plasma globotriaosylsphingosine (lyso-Gb3). ELISA revealed that 20/35 (57%) classic Fabry males were antibody (Immunoglobulin G, IgG) -positive (Ab+) at 6 months after the initiation of ERT, although only two of the seventeen (12%) later-onset Fabry males and none of the 45 Fabry females were. The Ab+ state was maintained at least until 24 months after the initiation of ERT in most of the cases, the exceptions being two patients who acquired immune tolerance during ERT. As many Ab+ patients have nonsense mutations, attention should be paid to the formation of anti-drug antibodies in Fabry patients harboring such gene mutations, who hardly produce α-Gal protein. Serum-mediated α-Gal inhibition was seen in most of the Ab+ patients and the antibodies affected the reduction of the plasma lyso-Gb3 level following ERT, suggesting that the antibodies inhibit the enzyme activity. There was a correlation between the results of the IC test and those of the ELISA. As the former is easy and rapid, it should be useful as a bed-side test.

17.
Mol Genet Metab Rep ; 25: 100639, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32884906

RESUMO

The efficacy of enzyme replacement therapy (ERT) for lysosomal storage diseases (LSDs) possibly depends on the cellular uptake of recombinant lysosomal enzymes (LEs), and it is known that cation-independent mannose 6-phosphate receptor (CI-M6PR) on the cell membrane is predominantly involved in the endocytosis of many LEs. To examine the biomolecular interaction between therapeutic LEs and CI-M6PR, we biophysically analyzed the complex formation of four LEs available with domain 9 of human CI-M6PR, a binding site of the receptor, by means of surface plasmon resonance (SPR) biosensor assays. The results revealed that the affinity of the LEs for domain 9 of the receptor increased in the following order: laronidase, agalsidase beta, idursulfase, and alglucosidase alfa; and the high affinity of laronidase for domain 9 of CI-M6PR was due to fast complex formation rather than slow dissociation of the complex. The affinity of the enzymes for domain 9 of CI-M6PR almost coincided with their cellular uptake. The SPR biosensor assay is sensitive and provides important information for the development of effective therapeutic LEs for LSDs.

18.
Neurosci Res ; 155: 12-19, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31340161

RESUMO

Sandhoff disease (SD) is a genetic disorder caused by a mutation of HEXB, which is the ß-subunit gene of ß-hexosaminidase A and B (HexA and HexB) in humans. HEXB mutation reduces HexA and HexB enzymatic activities, and results in the massive accumulation of ganglioside GM2 in the nervous system. Severe phenotypes of SD show progressive neurodegeneration in human infants, and lysosomal dysfunction that may affect the early development of the nervous system. In a previous study, neural stem cells (NSCs) and induced pluripotent stem cells derived from SD model mice, which are Hexb-deficient (Hexb-/-), demonstrated impaired neuronal differentiation. This study investigated early neurodevelopment in vivo using Hexb-/- mice. The structure of adult cerebral cortices of Hexb-/- mice was normal. However, the expression of Sox2, an NSC-related gene, was reduced in the embryonic cerebral cortices of Hexb-/- mice. Moreover, a reduction of early neuronal migration and differentiation was observed in the embryonic cerebral cortices of Hexb-/- mice. In addition, we showed that the production of layer-specific neurons was delayed in somatosensory cerebral cortices of Hexb-/- mice. These findings suggest that the alterations observed in embryonic Hexb-/- mice may contribute to deficits in neurodevelopment of SD.


Assuntos
Hexosaminidase B/metabolismo , Células-Tronco Neurais/metabolismo , Neurônios/metabolismo , Doença de Sandhoff/metabolismo , Animais , Diferenciação Celular/fisiologia , Gangliosídeo G(M2)/metabolismo , Células-Tronco Pluripotentes Induzidas , Lisossomos/metabolismo , Camundongos Knockout , Neurogênese/fisiologia , Doença de Sandhoff/genética
19.
BMC Nephrol ; 20(1): 469, 2019 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-31847900

RESUMO

BACKGROUND: Fabry disease (FD) is an X-linked lysosomal storage disorder caused by mutations of the GLA gene, followed by deficiency in α-galactosidase A (α-gal) activity. Nephrotic syndrome, as the renal phenotype of FD, is unusual. Here, we report the rare case of a patient with FD with nephrotic syndrome whose proteinuria disappeared by immunotherapy. CASE PRESENTATION: A 67-year-old Japanese man was admitted to our hospital because of emesis, abdominal pain, and facial edema due to nephrotic syndrome. The patient was diagnosed with focal segmental glomerulosclerosis (FSGS) by renal biopsy before being diagnosed with FD, and immunotherapy was initiated. After treatment, the kidney biopsy results showed typical glycosphingolipid accumulation in the podocytes of this patient. The white blood cell α-gal activity was very low, and genetic analysis revealed a GLA gene variant (M296I), which is known as a late-onset genetic mutation of FD. Immunotherapy (steroids and cyclosporine A) dramatically improved the massive proteinuria. Currently, he has been undergoing enzyme replacement therapy, and his proteinuria has further decreased. There is the possibility that other nephrotic syndromes, such as minimal change nephrotic syndrome or FSGS, may co-exist in this patient. CONCLUSIONS: We experienced the rare case of a FD patient whose nephrotic syndrome disappeared by immunotherapy. These findings suggest that immunosuppressive treatment may be considered if nephrotic syndrome develops, even in patients with FD.


Assuntos
Doença de Fabry/sangue , Doença de Fabry/tratamento farmacológico , Imunossupressores/uso terapêutico , Síndrome Nefrótica/sangue , Síndrome Nefrótica/tratamento farmacológico , Idoso , Doença de Fabry/complicações , Humanos , Masculino , Síndrome Nefrótica/complicações , Resultado do Tratamento
20.
Mol Genet Metab Rep ; 17: 73-79, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30386727

RESUMO

We had experienced 117 Japanese Fabry patients (72 males and 45 females) from 1977 to 2006, and then we generated an improved Fabry analysis system in 2007 and have found 196 ones (95 males and 101 females) since then. In this study, we summarized the data of the patients and tried to elucidate the molecular and biochemical characteristics of Japanese Fabry patients. Gene analysis revealed various GLA mutations, including missense mutations (56.5%, 48 types); nonsense mutations (15.9%, 13 types); deletions (12.6%, 13 types); splicing defects (10.1%, 6 types); insertions (1.0%, 2 types), and insertions/deletions (0.5%, 1 type), in the patients that were tested. Amino acid substitutions resulting from the missense mutations found in the classic form patients tended to be localized in the core of the GLA protein, and those in the later-onset ones in the peripheral region. The most commonly identified pathogenic mutations are c.888G > A (p.M296I), c.936 + 919G > A, c.679C > T (p.R227X), c.335G > A (p.R112H), c.334C > T (p.R112C), and c.902G > A (p.R301Q). Among them, c.888G > A (p.M296I) is unique to Japanese Fabry patients. On the other hand, c.936 + 919G > A is a variant that has been frequently detected in Taiwan Chinese Fabry patients, and c.335G > A (p.R112H) in various countries. These are found in later-onset patients, and c.679C > T (p.R227X) and c.334C > T (p.R112C) classic ones. c.902G > A (p.R301Q) is found in both classic and later-onset form patients. A possible functional polymorphism, c.196G > C (p.E66Q), was identified in 0.4% of the subjects who underwent high-risk screening. The biochemical findings including leukocyte α-galactosidase A activity, plasma globotriaosylsphingosine level and urinary globotriaosylceramide in the individual phenotypic groups well reflected the phenotypic differences in this disease. The results will be useful for understanding the basis of Fabry disease in Japan.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...