Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Chem ; 12: 1389846, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38746020

RESUMO

This study investigated the synthesis of bioactive peptides from sheep milk through fermentation with Limosilactobacillus fermentum KGL4 MTCC 25515 strain and assessed lipase inhibition, ACE inhibition, α-glucosidase inhibition, and α-amylase inhibition activities during the fermentation process. The study observed the highest activities, reaching 74.82%, 70.02%, 72.19%, and 67.08% (lipase inhibition, ACE inhibition, α-glucosidase inhibition, and α-amylase inhibition) after 48 h at 37°C, respectively. Growth optimization experiments revealed that a 2.5% inoculation rate after 48 h of fermentation time resulted in the highest proteolytic activity at 9.88 mg/mL. Additionally, fractions with less than 3 kDa of molecular weight exhibited superior ACE-inhibition and anti-diabetic activities compared to other fractions. Fermentation of sheep milk with KGL4 led to a significant reduction in the excessive production of NO, TNF-α, IL-6, and IL-1ß produced in RAW 267.4 cells upon treatment with LPS. Peptides were purified utilizing SDS-PAGE and electrophoresis on 2D gels, identifying a maximum number of proteins bands ranging 10-70 kDa. Peptide sequences were cross-referenced with AHTPDB and BIOPEP databases, confirming potential antihypertensive and antidiabetic properties. Notably, the peptide (GPFPILV) exhibited the highest HPEPDOCK score against both α-amylase and ACE.

2.
Plants (Basel) ; 13(6)2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38592835

RESUMO

Maize (Zea mays L.) is an important cereal and is affected by climate change. Therefore, the production of climate-smart maize is urgently needed by preserving diverse genetic backgrounds through the exploration of their genetic diversity. To achieve this, 96 maize inbred lines were used to screen for phenotypic yield-associated traits and grain quality parameters. These traits were studied across two different environments (Anand and Godhra) and polymorphic simple sequence repeat (SSR) markers were employed to investigate the genetic diversity, population structure, and trait-linked association. Genotype-environment interaction (GEI) reveals that most of the phenotypic traits were governed by the genotype itself across the environments, except for plant and ear height, which largely interact with the environment. The genotypic correlation was found to be positive and significant among protein, lysine and tryptophan content. Similarly, yield-attributing traits like ear girth, kernel rows ear-1, kernels row-1 and number of kernels ear-1 were strongly correlated to each other. Pair-wise genetic distance ranged from 0.0983 (1820194/T1 and 1820192/4-20) to 0.7377 (IGI-1101 and 1820168/T1). The SSRs can discriminate the maize population into three distinct groups and shortlisted two genotypes (IGI-1101 and 1820168/T1) as highly diverse lines. Out of the studied 136 SSRs, 61 were polymorphic to amplify a total of 131 alleles (2-3 per loci) with 0.46 average gene diversity. The Polymorphism Information Content (PIC) ranged from 0.24 (umc1578) to 0.58 (umc2252). Similarly, population structure analysis revealed three distinct groups with 19.79% admixture among the genotypes. Genome-wide scanning through a mixed linear model identifies the stable association of the markers umc2038, umc2050 and umc2296 with protein, umc2296 and umc2252 with tryptophan, and umc1535 and umc1303 with total soluble sugar. The obtained maize lines and SSRs can be utilized in future maize breeding programs in relation to other trait characterizations, developments, and subsequent molecular breeding performances for trait introgression into elite genotypes.

3.
Heliyon ; 10(5): e27048, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38463846

RESUMO

Castor (Ricinus communis L.) is an industrially important oil producing crop belongs to Euphorbiaceae family. Castor oil has unique chemical properties make it industrially important crop. It is a member of monotypic genus even though it has ample amount of variability. Using this variability, conventionally many varieties and hybrids have been developed. But, like other crops, the modern and unconventional methods of crop improvement has not fully explored in castor. This article discusses the use of polyploidy induction, distant/wide hybridization and mutation breeding as tools for generating variety. Modern approaches accelerate the speed of crop breeding as an alternative tool. To achieve this goal, molecular markers are employed in breeding to capture the genetic variability through molecular analysis and population structuring. Allele mining is used to trace the evolution of alleles, identify new haplotypes and produce allele specific markers for use in marker aided selection using Genome wide association studies (GWAS) and quantitative trait loci (QTL) mapping. Plant genetic transformation is a rapid and effective mode of castor improvement is also discussed here. The efforts towards developing stable regeneration protocol provide a wide range of utility like embryo rescue in distant crosses, development of somaclonal variation, haploid development using anther culture and callus development for stable genetic transformation has reviewed in this article. Omics has provided intuitions to the molecular mechanisms of (a)biotic stress management in castor along with dissected out the possible genes for improving the yield. Relating genes to traits offers additional scientific inevitability leading to enhancement and sympathetic mechanisms of yield improvement and several stress tolerance.

4.
Phytochemistry ; 213: 113776, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37393971

RESUMO

Castor is industrially important non-edible oil seeds crop severely affected by soil borne pathogen Fusarium oxysporum f. sp. ricini which causes heavy economic losses among the castor growing states in India and worldwide. The development of Fusarium wilt resistant varieties in castor is also challenging because the genes identified for resistance are recessive in nature. Unlike transcriptomics and genomics, proteomics is always a method of choice for quick identification of novel proteins expressed during biological events. Therefore, comparative proteomic approach was employed for identification of proteins released in resistant genotype during Fusarium infection. Protein was extracted from inoculated 48-1 resistant and JI-35 susceptible genotype and subjected to 2D-gel electrophoresis coupled with RPLC-MS/MS. This analysis resulted in 18 unique peptides in resistant genotype and 8 unique peptides in susceptible genotype were identified through MASCOT search database. The real time expression study showed that 5 genes namely CCR 1, Germin like protein 5-1, RPP8, Laccase 4 and Chitinase like 6 was found highly up-regulated during Fusarium oxysporum infection. Furthermore, end point PCR analysis of c-DNA showed amplification of three genes namely Chitinase 6 like, RPP8 and ß-glucanase exclusively in resistant genotype indicating that these genes may be involved in resistance phenomenon in castor. Up-regulation of CCR-1 and Laccase 4 involved in lignin biosynthesis provides mechanical strength and may help to prevent the entry of fungal mycelia and protein Germin like 5-1 helps to neutralized ROS by SOD activity. The clear role of these genes can be further confirmed through functional genomics for castor improvement and also for development of transgenic in different crops for wilt resistance.


Assuntos
Fusariose , Fusarium , Ricinus , Proteômica/métodos , Lacase , Espectrometria de Massas em Tandem , Peptídeos , Doenças das Plantas/microbiologia
5.
PeerJ ; 11: e15403, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37304873

RESUMO

Pearl millet is a key food for millions living in semi-arid and arid regions and is a main diet for poorer populations. The genetic diversity existing in the pearl millet germplasm can be used to improve the micronutrient content and grain yield. Effective and organized exploitation of diversity at morphological and DNA levels is the strategy for any crop improvement program. In this study, the genetic diversity of 48 pearl millet genotypes was evaluated for eight morphological traits and eleven biochemical characters. All genotypes were also characterized using twelve SSR and six SRAP markers to evaluate genetic diversity. The significant mean difference between morphological and biochemical traits were detected. The productive tillers per plant varied from 2.65 to 7.60 with a mean of 4.80. The grain yield of genotypes varied more than 3× from 15.85 g (ICMR 07222) to 56.75 g (Nandi 75) with an average of 29.54 g per plant. Higher levels of protein, iron, and zinc contents were found to be present in ICMR 12555 (20.6%), ICMR 08666 (77.38 ppm), and IC 139900 (55.48 ppm), respectively, during the experiment. Substantial variability was observed for grain calcium as it ranged from 100.00 ppm (ICMR 10222) to 256.00 ppm (ICMR 12888). The top eight nutrient-dense genotypes flowered in 34-74 days and had 5.71-9.39 g 1,000 grain weight. Genotype ICMR 08666 was superior for Fe, Zn, K and P. The inter-genotype similarity coefficient at the genetic level, generated using DNA markers, ranged from 0.616 to 0.877 with a mean of 0.743. A combination of morpho-biochemical traits and DNA markers based diversity may help to differentiate the genotypes and diverse genotypes can be used in breeding programs to improve the mineral content in pearl millet.


Assuntos
Pennisetum , Marcadores Genéticos/genética , Pennisetum/genética , Melhoramento Vegetal , Grão Comestível/genética , Variação Genética/genética
6.
Foods ; 12(10)2023 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-37238823

RESUMO

The investigation aimed at assessing a comparative study on the production and characterization of ACE inhibitory, anti-diabetic, and anti-inflammatory activities, along with the production of ACE inhibitory and anti-diabetic peptides through the fermentation of buffalo and camel milk by Limosilactobacillus fermentum (KGL4) and Saccharomyces cerevisiae (WBS2A). The angiotensin-converting enzyme (ACE) inhibitory and anti-diabetic properties were evaluated at particular time intervals (12, 24, 36, and 48 h) at 37 °C, and we discovered maximum activity at 37 °C after 48 h of incubation. The maximum ACE inhibitory, lipase inhibitory activities, alpha-glucosidase inhibitory, and alpha-amylase inhibitory activities were found in the fermented camel milk (77.96 ± 2.61, 73.85 ± 1.19, 85.37 ± 2.15, and 70.86 ± 1.02), as compared to the fermented buffalo milk (FBM) (75.25 ± 1.72, 61.79 ± 2.14, 80.09 ± 0.51, and 67.29 ± 1.75). Proteolytic activity was measured with different inoculation rates (1.5%, 2.0%, and 2.5%) and incubation times (12, 24, 36, and 48 h) to optimize the growth conditions. Maximum proteolysis was found at a 2.5% inoculation rate and at a 48 h incubation period in both fermented buffalo (9.14 ± 0.06) and camel milk (9.10 ± 0.17). SDS-PAGE and 2D gel electrophoresis were conducted for protein purification. The camel and buffalo milk that had not been fermented revealed protein bands ranging from 10 to 100 kDa and 10 to 75 kDa, respectively, whereas all the fermented samples showed bands ranging from 10 to 75 kDa. There were no visible protein bands in the permeates on SDS-PAGE. When fermented buffalo and camel milk were electrophoresed in 2D gel, 15 and 20 protein spots were detected, respectively. The protein spots in the 2D gel electrophoresis ranged in size from 20 to 75 kDa. To distinguish between different peptide fractions, water-soluble extract (WSE) fractions of ultrafiltration (3 and 10 kDa retentate and permeate) of fermented camel and buffalo milk were employed in RP-HPLC (reversed-phase high-performance liquid chromatography). The impact of fermented buffalo and camel milk on inflammation induced by LPS (lipopolysaccharide) was also investigated in the RAW 264.7 cell line. Novel peptide sequences with ACE inhibitory and anti-diabetic properties were also analyzed on the anti-hypertensive database (AHTDB) and bioactive peptide (BIOPEP) database. We found the sequences SCQAQPTTMTR, EMPFPK, TTMPLW, HPHPHLSFMAIPPK, FFNDKIAK, ALPMHIR, IPAVFK, LDQWLCEK, and AVPYPQR from the fermented buffalo milk and the sequences TDVMPQWW, EKTFLLYSCPHR, SSHPYLEQLY, IDSGLYLGSNYITAIR, and FDEFLSQSCAPGSDPR from the fermented camel milk.

7.
Mol Biol Rep ; 50(6): 4875-4886, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37060520

RESUMO

BACKGROUND: Teak (Tectona grandis L.) is a forest tree having 2n = 2x = 36 diploid chromosomes. Plants are continually subjected to variety of abiotic stresses due to climate change, which alter their physiological processes and gene expression. METHODS AND RESULTS: The current study sought to examine the physiological and differential gene expression of teak seedlings exposed to abiotic stresses (150 mM NaCl and 15% PEG-6000). Chlorophyll content, membrane stability index and relative water content were measured at 0, 2, 7 and 12 days after treatment. These parameters were initially numerically reduced, but they were significantly reduced during a longer period of treatment. Seedlings treated with 150 mM NaCl displayed more harmful effect on the plant than other treatments. The results showed that variety of stresses significantly affect the physiology of seedlings because they cause membrane damage, ROS generation, chlorophyll degradation, and reduction in water absorption. The gene expression of treated and control seedlings was also evaluated at 12 days after treatment. Ten stress-related genes were examined for their differential expression using RT-PCR under applied stress. The stress-treated seedlings' leaves showed an up-regulated expression of the genes MYB-3, HSP-1, BI-1 and CS-2. CONCLUSION: Up-regulation of the genes confirmed the protective function of these genes in plants under abiotic stress. However, gene expression was affected by treatments, the extent of stress and the species of plant. This study came to the conclusion that physiological parameters could be utilized as marker indices to assess a tree's capability to withstand stress at seedling stage. The up-regulated genes will be further investigated and utilized to validate stress tolerance and susceptible teak seedlings.


Assuntos
Plântula , Cloreto de Sódio , Plântula/metabolismo , Cloreto de Sódio/metabolismo , Estresse Fisiológico/genética , Clorofila/metabolismo , Cloreto de Sódio na Dieta , Água/metabolismo , Expressão Gênica
8.
J Am Nutr Assoc ; 42(6): 598-617, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-36416542

RESUMO

OBJECTIVE: The goal of this research was to purify and characterize the novel angiotensin-converting enzyme (ACE)-inhibitory and antioxidant peptides from fermented whey protein concentrate produced by Lactobacillus paracasei and Saccharomyces cerevisiae in a co-fermentation system. METHOD: Whey protein fermented with lactic acid bacteria and yeast culture was analyzed for antioxidative, ACE inhibition, as well as anti-inflammatory activity followed by SDS-PAGE, isoelectric focusing, and 2-dimensional (2D) analysis. Anti-inflammatory activity of whey protein fermentate was also studied on the RAW 264.7 cell line. The bioactive peptides were separated from the whey protein fermentate using reverse-phase high-performance liquid chromatography (RP-HPLC) and reverse-phase liquid chromatography mass spectrometry (RPLC/MS), and thus identification and characterization of purified bioactive peptide was performed. RESULTS: Whey protein fermentate samples' bioactivity was analyzed at specific time intervals at 12, 24, 36, and 48 hours at 37 °C for M11 and at 25 °C for WBS2A. The development settings (incubation time [12, 24, 36, and 48 hours) and inoculation rates [1.5%, 2.0%, and 2.5%]) were optimized for peptide synthesis via the o-phthaldialdehyde (OPA) method (proteolytic activity). Maximum proteolytic activity was observed at 37 °C for M11 (6.50 mg/mL) and at 25 °C for WBS2A (8.59 mg/mL) for 48 hours of incubation. Protein profiling was carried out using SDS-PAGE and 2D gel electrophoresis, in which Sodium dodecyl-sulfate (SDS) exhibited protein bands in the 10- to 55-kDa range, while 2D showed protein bands varying from 10 to 70 kDa. Every spot from 2D was digested by trypsin and identified by RPLC/MS. Protein fractionations (3- and 10-kDa permeates) were carried out employing RP-HPLC. Whey protein fermentate has anti-inflammatory action in RAW 264.7 macrophages that have been exposed to lipopolysaccharide. A molecular docking system was also used to investigate the interactions of peptides (AFLDSRTR, ILGAFIQIITFR) with human myeloperoxidase enzyme. CONCLUSIONS: The antihypertensive and antioxidative peptides discovered from whey protein fermentate may be helpful in the design of pharmacologically active healthy ingredients in the upcoming years.


Assuntos
Anti-Hipertensivos , Antioxidantes , Humanos , Anti-Hipertensivos/farmacologia , Proteínas do Soro do Leite/farmacologia , Antioxidantes/farmacologia , Inibidores da Enzima Conversora de Angiotensina/farmacologia , Simulação de Acoplamento Molecular , Peptídeos/farmacologia
9.
3 Biotech ; 10(12): 512, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33173716

RESUMO

Kalmegh [Andrographis paniculata (Burm. f.) Nees.] is one of the essential medicinal plants due to an important terpenoid, i.e. andrographolide possesses immense therapeutic and pharmacological uses. The experiment was performed to elucidate the expression of candidate genes associated with andrographolide biosynthesis. Based on results obtained in chromatography for andrographolide content analysis of six genotypes, two contrast genotypes, i.e. IC-520361 (maximum andrographolide content-2.33%) and Anand Local (lowest andrographolide content-1.01%) were selected for the transcriptome analysis. A total of 1.04 Gb of raw data were produced using MiSeq Illumina platform, in which IC 520361 generated 645 million base pairs sequence along with 4,524,251 raw reads and Anand Local produced 419 million base pairs sequence along with 3,021,316 raw reads. The combined assembly of high quality reads generated for both the samples had 33,247,454 bp of total assembled bases and 38,292 of transcripts. The GC percent of assembled transcripts was 44.79%, an average read length was 800 bp and N50 value was 1186 bp. Species-specific distribution using BLAST X (Nr), showed the highest Blast hits with Sesamum indicum. Out of 23,346 transcripts, 87% of transcripts annotated in UniProt KB (Universal Protein Resource KnowledgeBase) database and only 0.21% of transcripts were annotated in TAIR (The Arabidopsis Information Resources). Biological processes gene ontology classified based on Blast2GO showed, out of 6853 transcripts, 1370 of transcripts were represented by terpenoid biosynthetic pathway, which involved in secondary metabolite andrographolide biosynthesis. The heat map showed 1016 transcripts were differentially expressed between two kalmegh genotypes, in which nine important differentially expressed transcripts related to MEP (2C methyl-d-erythritol 4-phosphate) and MVA (Mevalonic acid) andrographolide biosynthesis pathways such as, geranyl diphosphate synthase small subunit, Isopentenyl-diphosphate delta-isomerase i-like, 4, 13-hydroxy-3-methylglutaryl-coenzyme a reductase etc. were upregulated in IC 520361 as compared to Anand Local, which were validated through RT-qPCR. The highest expression of gene 13-hydroxy-3-methylglutaryl-coenzyme a reductase (HMGR) was reported, which is responsible for accumulation of andrographolide in leaf. This comparative transcriptome analysis confirmed the expression level of genes were higher in accession IC 520361 as compare to Anand Local related to andrographolide biosynthesis pathways i.e. MEP and MVA. These up-regulated genes could be over-expressed to enhance the andrographolide content using genetic engineering of these metabolic pathways. It will also give an idea to the breeder for development of molecular markers for direct screening of the genotypes.

10.
3 Biotech ; 6(1): 55, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28330125

RESUMO

In the present study, 20 sandalwood (Santalum album L.) genotypes were characterized using RAPD, ISSR and SSR markers. Twenty-five RAPD and twenty-one ISSR primers that generated clear and reproducible banding patterns amplified 225 and 208 bands, respectively, among 20 sandalwood genotypes. Out of 225, 181 (83.13 %) RAPD bands were polymorphic while out of 208, 156 (75.77 %) ISSR bands were polymorphic. The average polymorphism information content (PIC) for RAPD and ISSR was 0.84 and 0.86, respectively. A good correlation (0.96) was observed between the matrices produced by RAPD and ISSR primers. Though, there was high similarity among genotypes (0.79 for RAPD and 0.70 for ISSR), the observed genetic diversity was found good enough for the characterization of sandalwood genotypes. Cross-species transferability SSR markers developed in S. austrocaledonicum and S. insulare were found to be monomorphic. The results of the present investigation would provide valid guidelines for collection, conservation and characterization of sandalwood genetic resources.

11.
3 Biotech ; 6(2): 204, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28330276

RESUMO

Understanding the genetic variation in germplasm is of utmost importance for crop improvement. Therefore, efforts were made to analyse the molecular marker based genetic diversity of 20 Annona genotypes from five different species of family Annonaceae. During analysis, a set of 11 RAPD primers yielded a total of 152 bands with 80.01 % polymorphism and PIC for RAPD ranged from 0.86 to 0.92 with a mean of 0.89. With 93.05 % polymorphism, 12 SSR primers produced 39 amplicons. The PIC for SSRs ranged from 0.169 to 0.694 with of average of 0.339. The dendrogram produced from pooled molecular data of 11 RAPD and 12 SSR primers showed seven clusters at a cutoff value of 0.78. The dendrogram discriminated all the Annona genotypes suggesting that significant genetic diversity was present among the genotypes. Proximate fruit composition study of nine fruiting genotypes of Annona revealed that A. squamosa possessed significantly higher amount of most of studies biochemical which gives an opportunity to fruit breeders to improve the other Annona species. Likewise, A. muricata being rich in seed oil content can be exploited in oil industries.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...