Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Nano ; 18(20): 12749-12759, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38726650

RESUMO

The complexity of the geometric and electronic structure of boron allotropes is associated with the multicentric bonding character and the consequent B polymorphism. When growth is limited to two-dimensions (2D), the structural and electronic confinement yields the borophenes family, where the interaction with the templating substrate actually determines the stability of inequivalent boron phases. We report here a detailed study of the growth of the honeycomb AlB2 phase on Al(111), followed by an investigation of its oxidation and reduction properties. By means of a combined experimental and theoretical approach, we show that the structure of the B/Al interface is affected by the complex interplay between B, Al, and common reactive agents like oxygen and hydrogen. While kinetic effects associated with diffusion and strain release influence the AlB2 growth in vacuo, Al, B, O, and H chemical affinities determine its redox behavior. Reduction with atomic hydrogen involves the B layer and yields an ordered honeycomb borophane H/AlB2 phase. Instead, oxidation takes place at the Al interface, giving origin to buried and 1D surface aluminum oxide phases.

2.
Ultramicroscopy ; 250: 113756, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37182363

RESUMO

Non-isochromatism in X-ray PhotoEmission Electron Microscopy (XPEEM) may result in unwanted artifacts especially when working with large field of views. The lack of isochromatism of XPEEM images may result from multiple factors, for instance the energy dispersion of the X-rays on the sample or the effect of one or more dispersive elements in the electron optics of the microscope, or the combination of both. In practice, the photon energy or the electron kinetic energy may vary across the image, complicating image interpretation and analysis. The effect becomes severe when imaging at low magnification upon irradiation with high energy photons. Such imaging demands for a large X-ray illuminating spot size usually achieved by opening the exit slit of the X-ray monochromator while reducing the monochromaticity of the irradiating light. However, we show that the effect is linear and can be fully removed. A versatile correction procedure is presented which leads to true monochromatic photoelectron images at improved signal-to-noise ratio. XPEEM data recorded at the nanospectroscopy beamline of the Elettra synchrotron radiation facility illustrate the working principle of the procedure. Also, reciprocal space XPEEM data such as angle-resolved photoelectron spectroscopy (ARPES) momentum plots suffer from linear energy dispersion artifacts which can be corrected in a similar way. Representative data acquired from graphene synthesized on copper by chemical vapor deposition prove the benefits of the correction procedure.

3.
Nature ; 2023 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-37024586
4.
Angew Chem Int Ed Engl ; 62(1): e202213295, 2023 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-36325959

RESUMO

The synthesis of high-value fuels and plastics starting from small hydrocarbon molecules plays a central role in the current transition towards renewable energy. However, the detailed mechanisms driving the growth of hydrocarbon chains remain to a large extent unknown. Here we investigated the formation of hydrocarbon chains resulting from acetylene polymerization on a Ni(111) model catalyst surface. Exploiting X-ray photoelectron spectroscopy up to near-ambient pressures, the intermediate species and reaction products have been identified. Complementary in situ scanning tunneling microscopy observations shed light onto the C-C coupling mechanism. While the step edges of the metal catalyst are commonly assumed to be the active sites for the C-C coupling, we showed that the polymerization occurs instead on the flat terraces of the metallic surface.

5.
Nanoscale ; 14(43): 16256-16261, 2022 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-36285832

RESUMO

After the discovery of graphene, many other 2D materials have been predicted theoretically and successfully prepared. In this context, single-sheet black phosphorus - phosphorene - is emerging as a viable contender in the field of (2D) semiconductors. Phosphorene offers high carrier mobility and an anisotropic structure that gives rise to a modulation of physical and chemical properties. This opens the way to many novel and fascinating applications related to field-effect transistors and optoelectronic devices. In previous studies, a single layer of blue phosphorene intermixed with Au atoms was grown using purified black phosphorus as a precursor. Starting from the observation that phosphorus vapor mainly consists of P clusters, in this work we aimed at obtaining blue phosphorus using much less expensive purified red phosphorus as an evaporant. By means of microscopy, spectroscopy and diffraction experiments, we show that black or red phosphorus deposition on Au(111) substrates yields the same blue phosphorus film.

6.
Angew Chem Int Ed Engl ; 61(44): e202210326, 2022 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-36070193

RESUMO

On-surface chemistry holds the potential for ultimate miniaturization of functional devices. Porphyrins are promising building-blocks in exploring advanced nanoarchitecture concepts. More stable molecular materials of practical interest with improved charge transfer properties can be achieved by covalently interconnecting molecular units. On-surface synthesis allows to construct extended covalent nanostructures at interfaces not conventionally available. Here, we address the synthesis and properties of covalent molecular network composed of interconnected constituents derived from halogenated nickel tetraphenylporphyrin on Au(111). We report that the π-extended two-dimensional material exhibits dispersive electronic features. Concomitantly, the functional Ni cores retain the same single-active site character of their single-molecule counterparts. This opens new pathways when exploiting the high robustness of transition metal cores provided by bottom-up constructed covalent nanomeshes.

7.
Angew Chem Int Ed Engl ; 61(20): e202201916, 2022 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-35267236

RESUMO

Uncommon metal oxidation states in porphyrinoid cofactors are responsible for the activity of many enzymes. The F430 and P450nor co-factors, with their reduced NiI - and FeIII -containing tetrapyrrolic cores, are prototypical examples of biological systems involved in methane formation and in the reduction of nitric oxide, respectively. Herein, using a comprehensive range of experimental and theoretical methods, we raise evidence that nickel tetraphenyl porphyrins deposited in vacuo on a copper surface are reactive towards nitric oxide disproportionation at room temperature. The interpretation of the measurements is far from being straightforward due to the high reactivity of the different nitrogen oxides species (eventually present in the residual gas background) and of the possible reaction intermediates. The picture is detailed in order to disentangle the challenging complexity of the system, where even a small fraction of contamination can change the scenario.


Assuntos
Níquel , Óxido Nítrico , Cobre , Compostos Férricos , Metais , Oxirredução
8.
Proc Natl Acad Sci U S A ; 119(4)2022 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-35042814

RESUMO

We unravel the interplay of topological properties and the layered (anti)ferromagnetic ordering in EuSn2P2, using spin and chemical selective electron and X-ray spectroscopies supported by first-principle calculations. We reveal the presence of in-plane long-range ferromagnetic order triggering topological invariants and resulting in the multiple protection of topological Dirac states. We provide clear evidence that layer-dependent spin-momentum locking coexists with ferromagnetism in this material, a cohabitation that promotes EuSn2P2 as a prime candidate axion insulator for topological antiferromagnetic spintronics applications.

9.
Angew Chem Weinheim Bergstr Ger ; 134(20): e202201916, 2022 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38505699

RESUMO

Uncommon metal oxidation states in porphyrinoid cofactors are responsible for the activity of many enzymes. The F430 and P450nor co-factors, with their reduced NiI- and FeIII-containing tetrapyrrolic cores, are prototypical examples of biological systems involved in methane formation and in the reduction of nitric oxide, respectively. Herein, using a comprehensive range of experimental and theoretical methods, we raise evidence that nickel tetraphenyl porphyrins deposited in vacuo on a copper surface are reactive towards nitric oxide disproportionation at room temperature. The interpretation of the measurements is far from being straightforward due to the high reactivity of the different nitrogen oxides species (eventually present in the residual gas background) and of the possible reaction intermediates. The picture is detailed in order to disentangle the challenging complexity of the system, where even a small fraction of contamination can change the scenario.

10.
Small ; 17(50): e2104779, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34643036

RESUMO

Molecular interfaces formed between metals and molecular compounds offer a great potential as building blocks for future opto-electronics and spintronics devices. Here, a combined theoretical and experimental spectro-microscopy approach is used to show that the charge transfer occurring at the interface between nickel tetraphenyl porphyrins and copper changes both spin and oxidation states of the Ni ion from [Ni(II), S = 0] to [Ni(I), S = 1/2]. The chemically active Ni(I), even in a buried multilayer system, can be functionalized with nitrogen dioxide, allowing a selective tuning of the electronic properties of the Ni center that is switched to a [Ni(II), S = 1] state. While Ni acts as a reversible spin switch, it is found that the electronic structure of the macrocycle backbone, where the frontier orbitals are mainly localized, remains unaffected. These findings pave the way for using the present porphyrin-based system as a platform for the realization of multifunctional devices where the magnetism and the optical/transport properties can be controlled simultaneously by independent stimuli.


Assuntos
Porfirinas , Cobre , Metais , Níquel , Temperatura
11.
ACS Nano ; 13(1): 526-535, 2019 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-30525448

RESUMO

The mechanism of few-layer graphene growth on the technologically relevant cubic-SiC/Si(001) substrate is uncovered using high-resolution core-level and angle-resolved photoelectron spectroscopy, low-energy electron microscopy, and microspot low-energy electron diffraction. The thickness of the graphitic overlayer supported on the silicon carbide substrate and related changes in the surface structure are precisely controlled by monitoring the progress of the surface graphitization in situ during high-temperature graphene synthesis, using a combination of microspectroscopic techniques. The experimental data reveal gradual changes in the preferential graphene lattice orientations at the initial stages of the few-layer graphene growth on SiC(001) and can act as reference data for controllable growth of single-, double-, and triple-layer graphene on silicon carbide substrates.

12.
ACS Appl Mater Interfaces ; 10(32): 27178-27187, 2018 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-30019889

RESUMO

We report on the proof of principle of a scalable method for writing the magnetic state by electron-stimulated molecular dissociative adsorption on ultrathin Co on Re(0001). Intense microfocused low-energy electron beams are used to promote the formation of surface carbides and graphitic carbon through the fragmentation of carbon monoxide. Upon annealing at the CO desorption temperature, carbon persists in the irradiated areas, whereas the clean surface is recovered elsewhere, giving origin to chemical patterns with nanometer-sharp edges. The accumulation of carbon is found to induce an in-plane to out-of-plane spin reorientation transition in Co, manifested by the appearance of striped magnetic domains. Irradiation at doses in excess of 1000 L of CO followed by ultrahigh vacuum annealing at 380 °C determines the formation of a graphitic overlayer in the irradiated areas, under which Co exhibits out-of-plane magnetic anisotropy. Domains with opposite magnetization are separated here by chiral Neél walls. Our fabrication protocol adds lateral control to spin reorientation transitions, permitting to tune the magnetic anisotropy within arbitrary regions of mesoscopic size. We envisage applications in the nano-engineering of graphene-spaced stacks exhibiting the desired magnetic state and properties.

13.
Chem Commun (Camb) ; 54(32): 3971-3973, 2018 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-29610817

RESUMO

The synthesis and preliminary characterization of a boron-based 2D framework are presented. The peculiar electronic and morphological properties of this compound, together with its facile formation process, enable it to be used as a novel smart material for the design of electronic devices.

14.
Nanoscale ; 9(42): 16412-16419, 2017 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-29058741

RESUMO

This work reports an electronic and micro-structural study of an appealing system for optoelectronics: tungsten disulfide (WS2) on epitaxial graphene (EG) on SiC(0001). The WS2 is grown via chemical vapor deposition (CVD) onto the EG. Low-energy electron diffraction (LEED) measurements assign the zero-degree orientation as the preferential azimuthal alignment for WS2/EG. The valence-band (VB) structure emerging from this alignment is investigated by means of photoelectron spectroscopy measurements, with both high space and energy resolution. We find that the spin-orbit splitting of monolayer WS2 on graphene is of 462 meV, larger than what is reported to date for other substrates. We determine the value of the work function for the WS2/EG to be 4.5 ± 0.1 eV. A large shift of the WS2 VB maximum is observed as well, due to the lowering of the WS2 work function caused by the donor-like interfacial states of EG. Density functional theory (DFT) calculations carried out on a coincidence supercell confirm the experimental band structure to an excellent degree. X-ray photoemission electron microscopy (XPEEM) measurements performed on single WS2 crystals confirm the van der Waals nature of the interface coupling between the two layers. In virtue of its band alignment and large spin-orbit splitting, this system gains strong appeal for optical spin-injection experiments and opto-spintronic applications in general.

16.
ACS Nano ; 11(7): 6921-6929, 2017 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-28661649

RESUMO

A major obstacle for the implementation of redox-based memristive memory or logic technology is the large cycle-to-cycle and device-to-device variability. Here, we use spectromicroscopic photoemission threshold analysis and operando XAS analysis to experimentally investigate the microscopic origin of the variability. We find that some devices exhibit variations in the shape of the conductive filament or in the oxygen vacancy distribution at and around the filament. In other cases, even the location of the active filament changes from one cycle to the next. We propose that both effects originate from the coexistence of multiple (sub)filaments and that the active, current-carrying filament may change from cycle to cycle. These findings account for the observed variability in device performance and represent the scientific basis, rather than prior purely empirical engineering approaches, for developing stable memristive devices.

17.
Nanoscale ; 8(20): 10849-56, 2016 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-27165117

RESUMO

We have studied (001) surface terminated cerium oxide nanoparticles grown on a ruthenium substrate using physical vapor deposition. Their morphology, shape, crystal structure, and chemical state are determined by low-energy electron microscopy and micro-diffraction, scanning probe microscopy, and synchrotron-based X-ray absorption spectroscopy. Square islands are identified as CeO2 nanocrystals exhibiting a (001) oriented top facet of varying size; they have a height of about 7 to 10 nm and a side length between about 50 and 500 nm, and are terminated with a p(2 × 2) surface reconstruction. Micro-illumination electron diffraction reveals the existence of a coincidence lattice at the interface to the ruthenium substrate. The orientation of the side facets of the rod-like particles is identified as (111); the square particles are most likely of cuboidal shape, exhibiting (100) oriented side facets. The square and needle-like islands are predominantly found at step bunches and may be grown exclusively at temperatures exceeding 1000 °C.

18.
Nat Nanotechnol ; 11(5): 449-54, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-26809057

RESUMO

Magnetic skyrmions are chiral spin structures with a whirling configuration. Their topological properties, nanometre size and the fact that they can be moved by small current densities have opened a new paradigm for the manipulation of magnetization at the nanoscale. Chiral skyrmion structures have so far been experimentally demonstrated only in bulk materials and in epitaxial ultrathin films, and under an external magnetic field or at low temperature. Here, we report on the observation of stable skyrmions in sputtered ultrathin Pt/Co/MgO nanostructures at room temperature and zero external magnetic field. We use high lateral resolution X-ray magnetic circular dichroism microscopy to image their chiral Néel internal structure, which we explain as due to the large strength of the Dzyaloshinskii-Moriya interaction as revealed by spin wave spectroscopy measurements. Our results are substantiated by micromagnetic simulations and numerical models, which allow the identification of the physical mechanisms governing the size and stability of the skyrmions.

19.
Sci Rep ; 6: 19734, 2016 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-26804138

RESUMO

Control over the film-substrate interaction is key to the exploitation of graphene's unique electronic properties. Typically, a buffer layer is irreversibly intercalated "from above" to ensure decoupling. For graphene/Ni(111) we instead tune the film interaction "from below". By temperature controlling the formation/dissolution of a carbide layer under rotated graphene domains, we reversibly switch graphene's electronic structure from semi-metallic to metallic. Our results are relevant for the design of controllable graphene/metal interfaces in functional devices.

20.
Phys Rev Lett ; 115(13): 136102, 2015 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-26451569

RESUMO

In catalytic methanol oxidation on ultrathin vanadium oxide layers on Rh(111) (Θ_{V}≈0.2 monolayer equivalent) we observe a 2D ripening of the VO_{x} islands that is controlled by the catalytic reaction. Neighboring VO_{x} islands move under reaction conditions towards each other and coalesce. The motion and the coalescence of the islands are explained by a polymerization-depolymerization equilibrium that is sensitive to gradients in the adsorbate coverages.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...