Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Pollut ; 313: 120168, 2022 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-36115483

RESUMO

Marine mammals are one of the groups of animals most affected by marine pollution including that by organic compounds which, besides bearing recognised harmful effects to adults, they may also affect foetuses through placental transfer. In this study we analysed samples of fin whale (Balaenoptera physalus) females and their foetuses collected in the western Iceland summer feeding grounds in 2018. Three different families of organic pollutants: organophosphate esters (OPEs); halogenated flame retardants (HFRs); and short chain chlorinated paraffins (SCCPs), were analysed and their placental transfer investigated. HFRs were detected in 87.5% of females and 100% of foetus samples with concentrations that ranged between nd-15.4 and 6.37-101 ng/g lipid weight (lw), respectively. OPEs were detected in all samples, both from females (85.8-567 ng/g lw) and foetuses (nq-1130 ng/g lw). SCCPs were detected in 87.5% of female samples and 100% of foetal samples with concentrations that ranged between nd-30.9 and nq-574 ng/g lw, respectively. For OPE compounds, a significant negative correlation was observed between the logarithm maternal transfer ratio and their log Kow, indicating that a high lipophilicity reduced placental transfer rate. Interestingly, the decabromodiphenyl ethane (DBDPE) was the compound with the highest log Kow but also the one that was transferred the most from mothers to foetuses, calling for in-depth research on this pollutant. These results constitute the first evidence of mother-calf transfer of plasticizers and flame retardants in fin whales. Further investigations are needed to determine their potential effects on this species and other groups of animals.


Assuntos
Poluentes Ambientais , Baleia Comum , Retardadores de Chama , Animais , Feminino , Gravidez , Oceano Atlântico , Monitoramento Ambiental , Poluentes Ambientais/análise , Ésteres/análise , Retardadores de Chama/análise , Éteres Difenil Halogenados/análise , Lipídeos , Organofosfatos/análise , Placenta/química , Plastificantes/análise
2.
Environ Pollut ; 292(Pt B): 118377, 2022 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-34656682

RESUMO

Concentrations of organophosphate esters (OPEs) plasticizers were analysed in the present study. Fifty-five fish samples belonging to three highly commercial species, European sardine (Sardina pilchardus), European anchovy (Engraulis encrasicolus), and European hake (Merluccius merluccius), were taken from the Western Mediterranean Sea. OPEs were detected in all individuals, except for two hake samples, with concentrations between 0.38 and 73.4 ng/g wet weight (ww). Sardines presented the highest mean value with 20.5 ± 20.1 ng/g ww, followed by anchovies with 14.1 ± 8.91 ng/g ww and hake with 2.48 ± 1.76 ng/g ww. The lowest OPE concentrations found in hake, which is a partial predator of anchovy and sardine, and the higher δ15N values (as a proxy of trophic position), may indicate the absence of OPEs biomagnification. Eleven out of thirteen tested OPEs compounds were detected, being diphenyl cresyl phosphate (DCP) one of the most frequently detected in all the species. The highest concentration values were obtained for tris(1,3-dichloro-2-propyl) phosphate (TDClPP), trihexyl phosphate (THP), and tris(2-butoxyethyl) phosphate (TBOEP), for sardines, anchovies, and hakes, respectively. The human health risk associated with the consumption of these fish species showing that their individual consumption would not pose a considerable threat to public health regarding OPE intake.


Assuntos
Retardadores de Chama , Plastificantes , Animais , Monitoramento Ambiental , Ésteres/análise , Retardadores de Chama/análise , Humanos , Mar Mediterrâneo , Organofosfatos/análise , Plastificantes/análise
3.
Environ Pollut ; 283: 117108, 2021 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-33866215

RESUMO

Loggerhead turtles (Caretta caretta) voluntarily ingest floating plastic debris and hence are chronically exposed to plastic additives, but very little is known about the levels of these compounds in their tissues. This work studied the presence of organophosphate esters (OPEs) on sea turtles collected from two different areas in the western Mediterranean, some of their prey and some floating plastic debris. OPEs were detected in all the samples analysed and ∑OPEs ranged from 12.5 to 384 ng/g wet weight (ww) in the turtles from the Catalan coasts, with a mean value of 21.6 ng/g ww, and from 6.08 to 100 ng/g ww in the turtles the Balearic Islands, with a mean value of 37.9 ng/g ww. Differences in ∑OPEs were statistically significant, but turtles from the two regions did not differ in their OPE profiles. As per turtle's prey, ∑OPEs ranged from 4.55 to 90.5 ng/g ww. Finally, marine plastic litter showed ∑OPEs concentrations between 10.9 and 868 ng/g. Although most compounds were present in both potential sources of contamination, prey and plastic debris, the OPE profiles in loggerhead turtles and these sources were different. Some OPEs, such as tris(2-isopropylphenyl) phosphate (T2IPPP), tripropyl phosphate (TPP) and tris(2-butoxyethyl) phosphate (TBOEP), were detected in plastic debris and turtle muscle but not in their prey, thus suggesting that ingestion of plastic debris was their main source. Contrarily, the levels of triethyl phosphate (TEP), diphenyl cresyl phosphate (DCP), 2-isopropylphenyl diphenyl phosphate (2IPPDPP) and 4-isopropylphenyl diphenyl phosphate (4IPPDPP) in turtle muscle were much higher than in jellyfish, their main prey, thus indicating a biomagnification potential. Regular ingestion of plastic debris and contamination from their prey may explain why ∑OPEs in loggerhead turtles is much higher than the values reported previously for teleost fishes and marine mammals from the western Mediterranean.


Assuntos
Plásticos , Tartarugas , Animais , Mar Mediterrâneo , Músculos , Espanha
4.
Sci Total Environ ; 753: 142205, 2021 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-33207472

RESUMO

PBDEs, HBCD, novel DBDPE, PBEB and HBB, dechloranes, OPFRs and natural MeO-PBDEs were monitored in muscle of striped dolphins (Stenella coeruleoalba) from the Mediterranean Sea collected in three time periods (1990, 2004-2009 and 2014-2018). PBDEs levels decreased about 60% in under three decades, from 5067 ± 2210 to 2068 ± 2642ngg-1 lw, evidencing the success of their ban. Most PBDEs were found in all the samples, with BDE-47, -99, -154, -100 and -153 as the main contributors. Found in 71.4% of the samples, α-HBCD was stable through time and usually

Assuntos
Retardadores de Chama , Stenella , Animais , Monitoramento Ambiental , Retardadores de Chama/análise , Éteres Difenil Halogenados/análise , Mar Mediterrâneo , Organofosfatos
5.
Sci Total Environ ; 721: 137768, 2020 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-32197282

RESUMO

Pollution of the marine environment by litter composed of plastics is a growing concern. Chemical additives such as organophosphate flame retardants (OPFRs), which are added to plastics to improve their qualities, are in focus because they allegedly cause adverse effects on marine fauna. Here we analyse OPFR levels in the muscle of fin whales because, as a mysticete, this cetacean obtains its food by filter-feeding and is thus highly vulnerable to marine litter. Moreover, the fin whale performs long-range migrations from low-latitude areas in winter to high-latitude areas in summer, a trait that makes it a potentially good large-scale biomonitor of pollution. We also analyse OPFR levels in its main prey, the krill Meganyctiphanes norvegica, to assess transfer through diet. The samples analysed consisted of muscle tissue from 20 fin whales and whole-body homogenates of 10 krill samples, all collected off West Iceland. From the 19 OPFRs analysed, we detected 7 in the fin whale and 5 in the krill samples. Tri-n-butyl phosphate (TNBP), Isopropylated triphenyl phosphate (IPPP) and Triphenylphosphine oxide (TPPO) were the most abundant compounds found in both species. Mean ∑OPFR concentration, expressed on a lipid weight basis, was 985 (SD = 2239) ng g-1 in fin whale muscle, and 949 (SD = 1090) ng g-1 in krill homogenates. These results constitute the first evidence of the presence of OPFRs in the tissues of fin whales. Furthermore, they seem to support the non-significance of bioaccumulation of OPFRs through lifespan and of biomagnification trough the food web.


Assuntos
Baleia Comum , Retardadores de Chama , Animais , Islândia , Organofosfatos , Plásticos
6.
Chemosphere ; 252: 126569, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32220724

RESUMO

Plastic litter pollution is increasing in the seas and oceans worldwide, raising concern on the potential effects of plasticizer additives on marine fauna. In this study, muscle samples of 30 bogues (Boops boops; Linneaus, 1758) from the North Western Mediterranean Sea were analysed to assess the concentrations of 19 organophosphate flame retardant (OPFR) compounds and to inspect any relationship with microplastic ingestion and relative levels of anthropization. Out of the 19 OPFRs analysed, 6 compounds were detected, being tri-n-butyl phosphate (TNBP), 2-ethylhexyldiphenyl phosphate (EHDPP) and triphenylphosphine oxide (TPPO) the most abundant. As expected, OPFR concentrations were higher in samples collected off the most anthropized area of the city of Barcelona than in those from the Cap de Creus Marine Protected Area, while no significant correlation was detected between OPFR concentrations and microplastic ingestion. The results of this manuscript provide a first evidence of OPFR presence in the muscle of the bogue and identify the coastal area off Barcelona as a possible concentration area for contaminants, further supporting the use of the bogue as an indicator species of plastic pollution in the Mediterranean Sea.


Assuntos
Monitoramento Ambiental , Retardadores de Chama/metabolismo , Microplásticos/análise , Organofosfatos/metabolismo , Perciformes/metabolismo , Poluentes Químicos da Água/metabolismo , Animais , Retardadores de Chama/análise , Mar Mediterrâneo , Organofosfatos/análise , Compostos Organofosforados , Plastificantes/análise , Plásticos/análise
7.
Chemosphere ; 226: 791-799, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30965250

RESUMO

PBDEs, HBCD, DBDPE, PBEB and HBB, dechloranes and OPFRs, as well as natural MeO-PBDEs were monitored in muscle tissue of three dolphin species from the southwestern Indian Ocean (Delphinus delphis, Sousa plumbea and Tursiops aduncus) collected between 2012 and 2015. The mean PBDE concentration was 416 ±â€¯333 ng g-1 lw. BDE-47 was found in all samples and was almost half the total PBDE contamination. BDE-209, BDE-100 and BDE-99 were present in ≥85% of the samples. HBCD was detected in just two samples at 20 and 330 ng g-1 lw. PBEB and HBB were not detected, while DBDPE was in all samples but always below its limit of quantification. Dec 602 was the only quantifiable dechlorane at 232 ±â€¯549 ng g-1 lw. Mean OPFR concentration was 10452 ±â€¯11301 ng g-1 lw. TBOEP was found in all samples making up most of the total OPFR contamination. MeO-PBDEs were detected in all samples at 114 ±â€¯137 ng g-1 lw. Data on flame retardants in biota and environmental samples from the southwestern Indian Ocean are scarce and, as a result, comparisons are difficult. However, data from other marine predators in the region, such as penguins, suggest that further studies are needed to determine if these concentrations are the consequence of a high local contamination or widespread thoughout the Indian Ocean.


Assuntos
Golfinhos/metabolismo , Monitoramento Ambiental/métodos , Retardadores de Chama/análise , Éteres Difenil Halogenados/análise , Animais , Retardadores de Chama/farmacocinética , Hidrocarbonetos Clorados/farmacocinética , Oceano Índico , Músculo Esquelético/metabolismo , Organofosfatos/farmacocinética , Poluentes Químicos da Água/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...