Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Animals (Basel) ; 13(13)2023 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-37444027

RESUMO

Olive leaves are an immense source of antioxidant and antimicrobial bioactive constituents. This study investigated the effects of dietary incorporation of olive leaf extract (OLE) on the growth performance, hematobiochemical parameters, immune response, antioxidant defense, histopathological changes, and some growth- and immune-related genes in the common carp (Cyprinus carpio). A total of 180 fish were allocated into four groups with triplicate each. The control group received the basal diet without OLE, while the other three groups were fed a basal diet with the OLE at 0.1, 0.2, and 0.3%, respectively. The feeding study lasted for 8 weeks, then fish were challenged with Aeromonas hydrophila. The results revealed that the group supplied with the 0.1% OLE significantly exhibited a higher final body weight (FBW), weight gain (WG%), and specific growth rate (SGR) with a decreased feed conversion ratio (FCR) compared to the other groups (p < 0.05). An increase in immune response was also observed in the fish from this group, with higher lysosome activity, immunoglobulin (IgM), and respiratory burst than nonsupplemented fish, both before and after the A. hydrophila challenge (p < 0.05). Similarly, the supplementation of the 0.1% OLE also promoted the C. carpio's digestive capacity pre- and post-challenge, presenting the highest activity of protease and alkaline phosphatase (p < 0.05). In addition, this dose of the OLE enhanced fish antioxidant capacity through an increase in the activity of superoxide dismutase (SOD) and glutathione peroxidase (GPx) and decreased hepatic lipid peroxidation end products (malondialdehyde-MDA), when compared to the control group, both pre- and post-infection (p < 0.05). Concomitantly with the superior immune response and antioxidant capacity, the fish fed the 0.1% OLE revealed the highest survival rate after the challenge with A. hydrophila (p < 0.05). A significant remarkable upregulation of the hepatic sod, nrf2, and protein kinase C transcription levels was detected as a vital approach for the prevention of both oxidative stress and inflammation compared to the infected unsupplied control group (p < 0.05). Interestingly, HPLC and UPLC-ESI-MS/MS analyses recognized that oleuropein is the main constituent (20.4%) with other 45 compounds in addition to tentative identification of two new compounds, namely oleuroside-10-carboxylic acid (I) and demethyl oleuroside-10-carboxylic acid (II). These constituents may be responsible for the OLE exerted potential effects. To conclude, the OLE at a dose range of 0.66-0.83 g/kg w/w can be included in the C. carpio diet to improve the growth, antioxidant capacity, and immune response under normal health conditions along with regulating the infection-associated pro-inflammatory gene expressions, thus enhancing resistance against A. hydrophila.

2.
Microsc Res Tech ; 86(5): 600-613, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36722417

RESUMO

Varanus niloticus is a lizard residing within the Varanidae family. To date no studies detailing its blood morphology and characteristics have been conducted. This study used histologically stained blood and bone marrow samples to visualize the cells and their characteristics. The erythrocytes were nucleated, these nuclei were located in the middle of the elliptical cells. Hemoglobin filled the erythrocyte cytoplasm. Eosinophils were large cells with lobed nuclei and spherical acidophilic granules. Large granulocytes called heterophils were present and characterized by their fusiform/pleomorphic cytoplasmic granules. Small spherical granulocytes, known as basophils, presented with round, deeply stained metachromatic granules that gave the cytoplasm a dusty or cobblestoned appearance which was able to cover the nucleus, which in turn had an unusual shape. Thrombocytes ranged in shape from ellipsoidal to fusiform. They featured an elliptical, centrally located nucleus and a pale cytoplasm, with small vacuoles, and fine acidophilic granulation. The smallest variety of non-granular leukocytes was the lymphocytes. Their cytoplasm was sparse, finely granular, light blue, had tiny cytoplasmic projections, featuring a high nucleus: cytoplasm ratio. Larger and smaller sized populations of lymphocytes were distinguished, with the larger cells similar in size to azurophils. In general, the pleomorphic monocytes were the biggest mononuclear leucocytes, displaying cytoplasmic projections. Their nuclei were ovoid, kidney- or bean-shaped, with vacuolated and granular cytoplasms. Round cells were common among the monocytic azurophils, and they had a granular cytoplasm, and their nuclei were typically eccentric. The present research identifies the cell types and morphologies within the Varanus niloticus. HIGHLIGHTS: H&E, PAS, toluidine blue, methylene blue, and Safranin O stains provided morphological and morphometric descriptions of Varanus niloticus blood cells from blood smears and bone marrow. The Varanus niloticus had nucleated erythrocytes and white blood cells, mostly granulocytes (heterophils, eosinophils, and basophils) and mononuclear cells (azurophils, lymphocytes, and monocytes). Aquatic vertebrate Varanus niloticus had larger erythrocytes than terrestrial counterparts. Blood cell morphological and cytochemical features were similar to other reptilian species, with some species-specific differences, which likely accommodate differing environmental conditions. These results may help clinical researchers track the pathological conditions and support conservation of these wild animals.


Assuntos
Células Sanguíneas , Lagartos , Animais , Leucócitos , Granulócitos , Eritrócitos , Corantes
3.
Fish Physiol Biochem ; 49(1): 1-17, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36622623

RESUMO

This study focuses on the relationship between myostatin (MyoS), myogenin (MyoG), and the growth hormone/insulin-like growth factor-1 (GH/IGF-1) axis for muscle growth and histopathological changes in muscle after an Aeromonas hydrophila infection. A total number of 90 Nile tilapia (55.85 g) were randomly allocated into two equal groups of three replicates each. The first group was an uninfected control group that was injected intraperitoneally (ip) with 0.2 ml phosphate buffer saline (PBS), while the second group was injected ip with 0.2 ml (1.3 × 108 CFU/ml) Aeromonas hydrophila culture suspension. Sections of white muscle and liver tissues were taken from each group 24 h, 48 h, 72 h, and 1 week after infection for molecular analysis and histopathological examination. The results revealed that with time progression, the severity of muscle lesions increased from edema between bundles and mononuclear inflammatory cell infiltration 24 h post-challenge to severe atrophy of muscle bundles with irregular and curved fibers with hyalinosis of the fibers 1 week postinfection. The molecular analysis showed that bacterial infection was able to induce the muscle expression levels of GH with reduced ILGF-1, MyoS, and MyoG at 24 h postinfection. However, time progression postinfection reversed these findings through elevated muscle expression levels of MyoS with regressed expression levels of muscle GH, ILGF-1, and MyoG. There have been no previous reports on the molecular expression analysis of the aforementioned genes and muscle histopathological changes in Nile tilapia following acute Aeromonas hydrophila infection. Our findings, collectively, revealed that the up-and down-regulation of the myostatin signaling is likely to be involved in the postinfection-induced muscle wasting through the negative regulation of genes involved in muscle growth, such as GH, ILGF-1, and myogenin, in response to acute Aeromonas hydrophila infection in Nile tilapia, Oreochromis niloticus.


Assuntos
Ciclídeos , Doenças dos Peixes , Infecções por Bactérias Gram-Negativas , Animais , Dieta , Aeromonas hydrophila , Miogenina/metabolismo , Miostatina/genética , Miostatina/metabolismo , Infecções por Bactérias Gram-Negativas/veterinária , Infecções por Bactérias Gram-Negativas/microbiologia , Músculo Esquelético , Doenças dos Peixes/microbiologia
4.
Fish Physiol Biochem ; 48(4): 973-989, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35781858

RESUMO

The current study investigated how different fasting and refeeding regimes would impact Nile tilapia growth performance, histopathological examination, and gene expression of myostatin, myogenin, GH, IGF-1, and NPYa. Nile tilapia fish (n = 120) were randomly allocated into four groups, including the control group fed on a basal diet for 6 weeks (F6), group A starved for 1 week and then refed for 5 weeks (S1F5), group B starved for 2 weeks and then refed for 4 weeks (S2F4), while group C starved for 4 weeks and then refed for 2 weeks (S4F2). Fasting provoked a decrease in body weight coincided with more extended starvation periods. Also, it induced muscle and liver histological alterations; the severity was correlated with the length of fasting periods. Gene expression levels of GH, MSTN, MYOG, and NPYa were significantly increased, while IGF1 was markedly depressed in fasted fish compared to the control group. Interestingly, refeeding after well-planned short fasting period (S1F5) modulated the histopathological alterations. To some extent, these changes were restored after refeeding. Restored IGF-I and opposing fasting expression profiles of the genes mentioned above thus recovered weights almost like the control group and achieved satisfactory growth compensation. Conversely, refeeding following more extended fasting periods failed to restore body weight. In conclusion, refeeding after fasting can induce a compensatory response. Still, the restoration capacity is dependent on the length of fasting and refeeding periods through exhibiting differential morphological structure and expressions pattern for muscle and growth-related genes.


Assuntos
Ciclídeos , Jejum , Animais , Peso Corporal , Jejum/fisiologia , Músculos/metabolismo , RNA Mensageiro/metabolismo
5.
Ecotoxicol Environ Saf ; 242: 113899, 2022 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-35870348

RESUMO

The ameliorative effects of Spirulina and Saccharomyces cerevisiae (S. cerevisiae) against fipronil toxicity in Nile tilapia fish were investigated. Fipronil is a kind of pesticide that is widely used in agriculture, thus this trial was conducted to evaluate the effect of fipronil on growth related parameters (final body weight, feed intake, weight gain, feed conversion ratio, specific growth rate, and protein efficiency ratio), hematology related parameters (RBCs, WBCs, hemoglobin, packed cell volume, and deferential leukocytic count), biochemistry related parameters (alanine aminotransferase, aspartate aminotransferase, total protein, albumin, urea, and creatinine), histopathology of liver, intestine, gills, and spleen, and gene expression of antioxidants, stress, inflammatory, apoptotic, and related to junction proteins genes as SOD and GPx, COX II, TNF-α, Casp-3, and Claudin-3, respectively, in Nile tilapia (Oreochromis niloticus). Four hundred and five Nile tilapia fish were distributed in a glass aquarium into nine groups according to the Spirulina and S. cerevisiae supplemented diets, with or without fipronil contaminated water. The classified groups are control, Sc: S. cerevisiae (4 g/Kg diet), Sp: Spirulina (1 g/100 g diet), Fb1: 0.0021 mg fipronil/L, ScFb1: S. cerevisiae (4 g/Kg diet) with 0.0021 mg fipronil/L, SpFb1: Spirulina (1 g/100 g diet) with 0.0021 mg fipronil/L, Fb2: 0.0042 mg fipronil/L, ScFb2: S. cerevisiae (4 g/Kg diet) with 0.0042 mg fipronil/L, and SpFb2: Spirulina (1 g/100 g diet) with 0.0042 mg fipronil/L. The results of the present investigation indicated the negative effect of fipronil on the growth performance parameters of Nile tilapia, which was confirmed by the results of hematology, biochemistry, and histopathology. In addition, the results of gene expression of antioxidants, stress, inflammatory, and apoptotic genes indicate the genotoxicity of fipronil. However, these negative effects were ameliorated by Spirulina and Saccharomyces dietary supplementation.


Assuntos
Ciclídeos , Spirulina , Ração Animal/análise , Animais , Antioxidantes/metabolismo , Ciclídeos/metabolismo , Dieta , Suplementos Nutricionais , Pirazóis , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo
6.
Animals (Basel) ; 11(7)2021 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-34359200

RESUMO

Ammonia is a critical hazardous nitrogen metabolic product in aquaculture. Despite trials for its control, ammonia intoxication remains one of the most critical issues to overcome. In this study, we explored the modulatory effect and potential mechanism by which Yucca schidigera extract (YSE) can ameliorate ammonia intoxication-induced adverse effects on tilapia health and metabolism. A total number of 120 Nile tilapia were evenly assigned into four groups with three replicates each. The first group served as normal control group; the second group was exposed to ammonia alone from the beginning of the experiment and for four weeks. The third group was supplied with YSE in water at a dose of 8 mg/L and exposed to ammonia. The fourth group was supplied with YSE only in water at a dose of 8 mg/L. YSE supplementation succeeded in improving water quality by reducing pH and ammonia levels. Moreover, YSE supplementation markedly alleviated chronic ammonia-induced adverse impacts on fish growth by increasing the final body weight (FBW), specific growth rate (SGR), feed intake and protein efficiency ratio (PER) while reducing the feed conversion ratio (FCR) via improvements in food intake, elevation of hepatic insulin-like growth factor (ILGF-1) and suppression of myostatin (MSTN) expression levels with the restoration of lipid reserves and the activation of lipogenic potential in adipose tissue as demonstrated by changes in the circulating metabolite levels. In addition, the levels of hepato-renal injury biomarkers were restored, hepatic lipid peroxidation was inhibited and the levels of hepatic antioxidant biomarkers were enhanced. Therefore, the current study suggests that YSE supplementation exerted an ameliorative role against chronic ammonia-induced oxidative stress and toxic effects due to its free radical-scavenging potential, potent antioxidant activities and anti-inflammatory effects.

7.
Fish Shellfish Immunol ; 70: 204-213, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28882806

RESUMO

ß-glucans are widely-known immunostimulants that are profusely used in aquaculture industry. The present study was conducted to evaluate the effect of different in-feed doses of ß-1,3/1,6-glucans on the expression of antioxidant and stress-related genes (GST, HSP-70, Vtg), inflammation related genes (Il-8, TNFα, CXC-chemokine and CAS) and adaptive immune-related genes (MHC-IIß, TLR-7, IgM-H, and Mx) of Oreochromis niloticus challenged and non-challenged with Streptococcus iniae. Six experimental groups were established: non-challenged control (non-supplemented diet), challenged control (non-supplemented diet), non-challenged supplemented with 0.1% ß-glucan, challenged supplemented with 0.1% ß-glucan, non-challenged supplemented with 0.2% ß-glucan and challenged supplemented with 0.2% ß-glucan. Fish were fed with ß-glucan for 21 days prior challenge and then sampled after 1, 3 and 7 days post-challenge. In non-challenged group, variable effects of the two doses of ß-Glucans on the expression of the studied genes were observed; 0.1% induced higher expression of HSP70, CXC chemokine, MHC-IIß and MX genes. Meanwhile, 0.2% induced better effect on the expression of Vtg, TNF-α, CAS and IgM-H, and almost equal effects of both doses on GST and IL8. However, with the challenged group, 0.2% ß-Glucans showed better effect than 0.1% at day one post challenge through significant up-regulation of GST, HSP, IL8, TNF-α, CXC, and MHC-IIß, meanwhile, the effect of 0.1% was only on the expression of HSP70, MHC-IIß, and TLR7 at day 3 post challenge. No stimulatory role for both doses of ß-Glucans on the expression of almost all genes at day 7 post-challenge. We conclude that both doses of ß-glucan can modulate the antioxidant, inflammation, stress and immune-related genes in Nile tilapia, moreover, 0.2% ß-Glucans showed better protective effect with Streptococcus iniae challange.


Assuntos
Adjuvantes Imunológicos/farmacologia , Ciclídeos , Doenças dos Peixes/imunologia , Imunidade Inata/efeitos dos fármacos , Infecções Estreptocócicas/veterinária , beta-Glucanas/farmacologia , Adjuvantes Imunológicos/administração & dosagem , Ração Animal/análise , Animais , Antioxidantes/metabolismo , Dieta/veterinária , Suplementos Nutricionais/análise , Relação Dose-Resposta a Droga , Doenças dos Peixes/microbiologia , Inflamação/genética , Infecções Estreptocócicas/imunologia , Infecções Estreptocócicas/microbiologia , Streptococcus iniae/fisiologia , Estresse Fisiológico/efeitos dos fármacos , beta-Glucanas/administração & dosagem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...