Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Molecules ; 27(21)2022 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-36363991

RESUMO

Olefin and diene transformations, catalyzed by organoaluminum-activated metal complexes, are widely used in synthetic organic chemistry and form the basis of major petrochemical processes. However, the role of M−(µ-Cl)−Al bonding, being proven for certain >C=C< functionalization reactions, remains unclear and debated for essentially more important industrial processes such as oligomerization and polymerization of α-olefins and conjugated dienes. Numerous publications indirectly point at the significance of M−(µ-Cl)−Al bonding in Ziegler−Natta and related transformations, but only a few studies contain experimental or at least theoretical evidence of the involvement of M−(µ-Cl)−Al species into catalytic cycles. In the present review, we have compiled data on the formation of M−(µ-Cl)−Al complexes (M = Ti, Zr, V, Cr, Ni), their molecular structure, and reactivity towards olefins and dienes. The possible role of similar complexes in the functionalization, oligomerization and polymerization of α-olefins and dienes is discussed in the present review through the prism of the further development of Ziegler−Natta processes and beyond.

2.
Int J Mol Sci ; 23(18)2022 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-36142244

RESUMO

Ethylene polymerization and ethylene/1-hexene copolymerization over the titanium-magnesium catalytic system in the presence of chlorocyclohexane (CHC) and hexachloro-p-xylene (HCPX) has been studied. Modification of TMC with chlorocyclohexane and hexachloro-p-xylene increased catalyst activity severalfold for both ethylene polymerization and ethylene/1-hexene copolymerization. The key kinetic regularities of ethylene homopolymerization and ethylene/1-hexene copolymerization in the presence of CHC and HCPX were determined, and the copolymerization constants were measured. Molecular characteristics and the copolymer composition were determined for the synthesized samples of ethylene homopolymers and ethylene/hexene copolymers. Modification of the titanium-magnesium catalyst with chlorinated organic compounds reduced 1-hexene content in the copolymer; polymerization was sensitive to 1-hexene as a regulator of polymer molecular weight. The potential mode of action of chlorinated organic modifiers on catalytic properties of titanium-magnesium catalyst is discussed.


Assuntos
Magnésio , Titânio , Alcenos , Etilenos , Polimerização , Polímeros , Xilenos
3.
Polymers (Basel) ; 13(11)2021 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-34072928

RESUMO

Low-temperature properties of high-density polyethylene (HDPE), low-density polyethylene (LDPE), linear low-density polyethylene (LLDPE), and their blends were studied. The analyzed low-temperature mechanical properties involve the deformation resistance and impact strength characteristics. HDPE is a bimodal ethylene/1-hexene copolymer; LDPE is a branched ethylene homopolymer containing short-chain branches of different length; LLDPE is a binary ethylene/1-butene copolymer and an ethylene/1-butene/1-hexene terpolymer. The samples of copolymers and their blends were studied by gel permeation chromatography (GPC), differential scanning calorimetry (DSC), 13С NMR spectroscopy, and dynamic mechanical analysis (DMA) using testing machines equipped with a cryochamber. It is proposed that such parameters as "relative elongation at break at -45 °C" and "Izod impact strength at -40 °C" are used instead of the ductile-to-brittle transition temperature to assess frost resistance properties because these parameters are more sensitive to deformation and impact at subzero temperatures for HDPE. LLDPE is shown to exhibit higher relative elongation at break at -45 °C and Izod impact strength at -20 ÷ 60 °C compared to those of LDPE. LLDPE terpolymer added to HDPE (at a content ≥ 25 wt.%) simultaneously increases flow properties and improves tensile properties of the blend at -45 °C. Changes in low-temperature properties as a function of molecular weight, MWD, crystallinity, and branch content were determined for HDPE, LLDPE, and their blends. The DMA data prove the resulting dependences. The reported findings allow one to understand and predict mechanical properties in the HDPE-LLDPE systems at subzero temperatures.

4.
Polymers (Basel) ; 13(5)2021 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-33800874

RESUMO

The compositions based on bimodal high-density polyethylene (HDPE, copolymer of ethylene with hexene-1) and in mixture with monomodal tercopolymer of ethylene with butene-1/hexene-1 (LLDPE, low-density polyethylene) have been studied. Phase equilibrium, thermodynamic parameters of interdiffusion in a wide range of temperatures and ratios of co-components were identified by refractometry, differential scanning calorimetry, optical laser interferometry, X-ray phase analysis. The phase state diagrams of the HDPE-LLDPE systems were constructed. It has been established that they belong to the class of state diagrams of "solid crystal solutions with unrestricted mixing of components". The paired parameters of the components interaction and their temperature dependences were calculated. Thermodynamic compatibility of α-olefins in the region of melts and crystallization of one of the components has been shown. The kinetics of formation of interphase boundaries during crystallization of α-olefins has been analyzed. The morphology of crystallized gradient diffusion zones has been analyzed by optical polarization microscopy. The sizes of spherulites in different areas of concentration profiles and values of interdiffusion coefficients were determined.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA