Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Adv Mater ; : e2404291, 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38975670

RESUMO

The transition toward hydrogen gas (H2) as an eco-friendly and renewable energy source necessitates advanced safety technologies, particularly robust sensors for H2 leak detection and concentration monitoring. Although palladium (Pd)-based materials are preferred for their strong H2 affinity, intense palladium-hydrogen (Pd-H) interactions lead to phase transitions to palladium hydride (PdHx), compromising sensors' durability and detection speeds after multiple uses. In response, this study introduces a high-performance H2 sensor designed from thiolate-protected Pd nanoclusters (Pd8SR16), which leverages the synergistic effect between the metal and protective ligands to form an intermediate palladium-hydrogen-sulfur (Pd-H-S) state during H2 adsorption. Striking a balance, it preserves Pd-H binding affinity while preventing excessive interaction, thus lowering the energy required for H2 desorption. The dynamic adsorption-dissociation-recombination-desorption process is efficiently and highly reversible with Pd8SR16, ensuring robust and rapid H2 sensing at parts per million (ppm). The Pd8SR16-based sensor demonstrates exceptional stability (50 cycles; 0.11% standard deviation in response), prompt response/recovery (t90 = 0.95 s/6 s), low limit of detection (LoD, 1 ppm), and ambient temperature operability, ranking it among the most sensitive Pd-based H2 sensors. Furthermore, a multifunctional prototype demonstrates the practicality of real-world gas sensing using ligand-protected metal nanoclusters.

2.
Nat Commun ; 15(1): 1974, 2024 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-38438350

RESUMO

Artificial Intelligence (AI) is currently experiencing a bloom driven by deep learning (DL) techniques, which rely on networks of connected simple computing units operating in parallel. The low communication bandwidth between memory and processing units in conventional von Neumann machines does not support the requirements of emerging applications that rely extensively on large sets of data. More recent computing paradigms, such as high parallelization and near-memory computing, help alleviate the data communication bottleneck to some extent, but paradigm- shifting concepts are required. Memristors, a novel beyond-complementary metal-oxide-semiconductor (CMOS) technology, are a promising choice for memory devices due to their unique intrinsic device-level properties, enabling both storing and computing with a small, massively-parallel footprint at low power. Theoretically, this directly translates to a major boost in energy efficiency and computational throughput, but various practical challenges remain. In this work we review the latest efforts for achieving hardware-based memristive artificial neural networks (ANNs), describing with detail the working principia of each block and the different design alternatives with their own advantages and disadvantages, as well as the tools required for accurate estimation of performance metrics. Ultimately, we aim to provide a comprehensive protocol of the materials and methods involved in memristive neural networks to those aiming to start working in this field and the experts looking for a holistic approach.

3.
ACS Appl Mater Interfaces ; 16(4): 4408-4419, 2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38231564

RESUMO

Laser-scribed graphene electrodes (LSGEs) are promising platforms for the development of electrochemical biosensors for point-of-care settings and continuous monitoring and wearable applications. However, the frequent occurrence of biofouling drastically reduces the sensitivity and selectivity of these devices, hampering their sensing performance. Herein, we describe a versatile, low-impedance, and robust antibiofouling interface based on sulfobetaine-zwitterionic moieties. The interface induces the formation of a hydration layer and exerts electrostatic repulsion, protecting the electrode surface from the nonspecific adsorption of various biofouling agents. We demonstrate through electrochemical and microscopy techniques that the modified electrode exhibits outstanding antifouling properties, preserving more than 90% of the original signal after 24 h of exposure to bovine serum albumin protein, HeLa cells, and Escherichia coli bacteria. The promising performance of this antifouling strategy suggests that it is a viable option for prolonging the lifetime of LSGEs-based sensors when operating on complex biological systems.


Assuntos
Incrustação Biológica , Técnicas Biossensoriais , Grafite , Humanos , Grafite/química , Células HeLa , Impedância Elétrica , Porosidade , Soroalbumina Bovina/química , Técnicas Biossensoriais/métodos , Eletrodos , Lasers , Incrustação Biológica/prevenção & controle , Técnicas Eletroquímicas
4.
Sensors (Basel) ; 23(12)2023 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-37420658

RESUMO

The rising demand for reliable, real-time, low-maintenance, cost-efficient monitoring systems with a high accuracy is becoming increasingly more notable in everyday life [...].


Assuntos
Monitorização Ambulatorial , Processamento de Sinais Assistido por Computador
5.
Front Cell Dev Biol ; 11: 1149912, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37181754

RESUMO

Exosomes are tiny vesicles released by cells that carry communications to local and distant locations. Emerging research has revealed the role played by integrins found on the surface of exosomes in delivering information once they reach their destination. But until now, little has been known on the initial upstream steps of the migration process. Using biochemical and imaging approaches, we show here that exosomes isolated from both leukemic and healthy hematopoietic stem/progenitor cells can navigate their way from the cell of origin due to the presence of sialyl Lewis X modifications surface glycoproteins. This, in turn, allows binding to E-selectin at distant sites so the exosomes can deliver their messages. We show that when leukemic exosomes were injected into NSG mice, they traveled to the spleen and spine, sites typical of leukemic cell engraftment. This process, however, was inhibited in mice pre-treated with blocking E-selectin antibodies. Significantly, our proteomic analysis found that among the proteins contained within exosomes are signaling proteins, suggesting that exosomes are trying to deliver active cues to recipient cells that potentially alter their physiology. Intriguingly, the work outlined here also suggests that protein cargo can dynamically change upon exosome binding to receptors such as E-selectin, which thereby could alter the impact it has to regulate the physiology of the recipient cells. Furthermore, as an example of how miRNAs contained in exosomes can influence RNA expression in recipient cells, our analysis showed that miRNAs found in KG1a-derived exosomes target tumor suppressing proteins such as PTEN.

6.
ACS Appl Mater Interfaces ; 15(4): 6202-6208, 2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36669154

RESUMO

The ongoing global industrialization along with the notable world population growth is projected to challenge the global environment as well as pose greater pressure on water and food needs. Foreseeably, an improved irrigation management system is essential and the quest for refined chemical sensors for soil-moisture monitoring is of tremendous importance. Nevertheless, the persisting challenge is to design and construct stable materials with the requisite sensitivity, selectivity, and high performance. Here, we report the introduction of porous metal-organic frameworks (MOFs), as the receptor layer, in capacitive sensors to efficiently sense moisture in two types of soil. Namely, our study unveiled that Cr-soc-MOF-1 offers the best sensitivity (≈24,000 pF) among the other tested MOFs for any given range of soil-moisture content, outperforming several well-known oxide materials. The corresponding increase in the sensitivities for tested MOFs at 500 Hz are ≈450, ≈200, and ≈30% for Cr-soc-MOF-1, Al-ABTC-soc-MOF, and Zr-fum-fcu-MOF, respectively. Markedly, Cr-soc-MOF-1, with its well-known water capacity, manifests an excellent sensitivity of ≈450% in clayey soil, and the analogous response time was 500 s. The noted unique sensing properties of Cr-soc-MOF-1 unveils the great potential of MOFs for soil-moisture sensing application.

7.
Biosensors (Basel) ; 12(4)2022 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-35448276

RESUMO

Two-dimensional concentric asymmetric microelectrodes play a crucial role in developing sensitive and specific biological assays using fluid micromixing generated by alternating current electrohydrodynamics (ac-EHD). This paper reports the design, simulation, fabrication, and characterization of fluid motion generated by 3D concentric microelectrodes for the first time. Electric field simulations are used to compare electric field distribution at the electrodes and to analyze its effects on microfluidic micromixing in 2D and 3D electrodes. Three-dimensional devices show higher electric field peak values, resulting in better fluid micromixing than 2D devices. As a proof of concept, we design a simple biological assay comprising specific attachment of streptavidin beads onto the biotin-modified electrodes (2D and 3D), which shows ~40% higher efficiency of capturing specific beads in the case of 3D ac-EHD device compared to the 2D device. Our results show a significant contribution toward developing 3D ac-EHD devices that can be used to create more efficient biological assays in the future.


Assuntos
Técnicas Analíticas Microfluídicas , Bioensaio , Simulação por Computador , Eletricidade , Microeletrodos
8.
Biosensors (Basel) ; 12(1)2022 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-35049662

RESUMO

Biological water contamination detection-based assays are essential to test water quality; however, these assays are prone to false-positive results and inaccuracies, are time-consuming, and use complicated procedures to test large water samples. Herein, we show a simple detection and counting method for E. coli in the water samples involving a combination of DNAzyme sensor, microfluidics, and computer vision strategies. We first isolated E. coli into individual droplets containing a DNAzyme mixture using droplet microfluidics. Upon bacterial cell lysis by heating, the DNAzyme mixture reacted with a particular substrate present in the crude intracellular material (CIM) of E. coli. This event triggers the dissociation of the fluorophore-quencher pair present in the DNAzyme mixture leading to a fluorescence signal, indicating the presence of E. coli in the droplets. We developed an algorithm using computer vision to analyze the fluorescent droplets containing E. coli in the presence of non-fluorescent droplets. The algorithm can detect and count fluorescent droplets representing the number of E. coli present in the sample. Finally, we show that the developed method is highly specific to detect and count E. coli in the presence of other bacteria present in the water sample.


Assuntos
DNA Catalítico , Computadores , Escherichia coli/genética , Corantes Fluorescentes/química , Microfluídica
9.
Light Sci Appl ; 11(1): 3, 2022 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-34974516

RESUMO

Neuromorphic vision sensors have been extremely beneficial in developing energy-efficient intelligent systems for robotics and privacy-preserving security applications. There is a dire need for devices to mimic the retina's photoreceptors that encode the light illumination into a sequence of spikes to develop such sensors. Herein, we develop a hybrid perovskite-based flexible photoreceptor whose capacitance changes proportionally to the light intensity mimicking the retina's rod cells, paving the way for developing an efficient artificial retina network. The proposed device constitutes a hybrid nanocomposite of perovskites (methyl-ammonium lead bromide) and the ferroelectric terpolymer (polyvinylidene fluoride trifluoroethylene-chlorofluoroethylene). A metal-insulator-metal type capacitor with the prepared composite exhibits the unique and photosensitive capacitive behavior at various light intensities in the visible light spectrum. The proposed photoreceptor mimics the spectral sensitivity curve of human photopic vision. The hybrid nanocomposite is stable in ambient air for 129 weeks, with no observable degradation of the composite due to the encapsulation of hybrid perovskites in the hydrophobic polymer. The functionality of the proposed photoreceptor to recognize handwritten digits (MNIST) dataset using an unsupervised trained spiking neural network with 72.05% recognition accuracy is demonstrated. This demonstration proves the potential of the proposed sensor for neuromorphic vision applications.

10.
Adv Mater ; 34(22): e2108524, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34990058

RESUMO

The low carrier mobility of organic semiconductors and the high parasitic resistance and capacitance often encountered in conventional organic Schottky diodes hinder their deployment in emerging radio frequency (RF) electronics. Here, these limitations are overcome by combining self-aligned asymmetric nanogap electrodes (≈25 nm) produced by adhesion lithography, with a high mobility organic semiconductor, and RF Schottky diodes able to operate in the 5G frequency spectrum are demonstrated. C16 IDT-BT is used, as the high hole mobility polymer, and the impact of p-doping on the diode performance is studied. Pristine C16 IDT-BT-based diodes exhibit maximum intrinsic and extrinsic cutoff frequencies (fC ) of >100 and 6 GHz, respectively. This extraordinary performance is attributed to the planar nature of the nanogap channel and the diode's small junction capacitance (<2 pF). Doping of C16 IDT-BT with the molecular p-dopant C60 F48 improves the diode's performance further by reducing the series resistance resulting to intrinsic and extrinsic fC of >100 and ≈14 GHz respectively, while the DC output voltage of an RF rectifier circuit increases by a tenfold. Our work highlights the importance of the planar nanogap architecture and paves the way for the use of organic Schottky diodes in large-area RF electronics of the future.

11.
Langmuir ; 37(47): 13890-13902, 2021 11 30.
Artigo em Inglês | MEDLINE | ID: mdl-34787434

RESUMO

Laser-scribed graphene electrodes (LSGEs) have attracted great attention for the development of electrochemical (bio)sensors due to their excellent electronic properties, large surface area, and high porosity, which enhances the electrons' transfer rate. An increasing active surface area and defect sites are the quickest way to amplify the electrochemical sensing attributes of the electrodes. Here, we have found that the activation procedure coupled to the electrodeposition of metal nanoparticles resulted in a significant amplification of the active area and the analytical performance. This preliminary study is supported by the demonstration of the simultaneous electrochemical sensing of dopamine (DA) and uric acid (UA) by the electrochemically activated LSGEs (LSGE*s). Furthermore, the electrodeposition of two different metal nanoparticles, gold (Au) and silver (Ag), was performed in multiple combinations on working and reference electrodes to investigate the enhancement in the electrochemical response of LSGE*s. Current enhancements of 32, 27, and 35% were observed from LSGE* with WE:Au/RE:LSG/CE:LSGE, WE:Au/RE:Au/CE:LSGE, and WE:Au/RE:Ag/CE:LSGE, compared to the same combinations of LSGEs without any surface activation. A homemade and practical potentiostat, KAUSTat, was used in these electrochemical depositions in this study. Among all of the combinations, the surface area was increased 1.6-, 2.0-, and 1.2-fold for WE:Au/RE:LSG/CE:LSGE, WE:Au/RE:Au/CE:LSGE, and WE:Au/RE:Ag/CE:LSGE prepared from LSGE*s, respectively. To evaluate the analytical performance, DA and UA were detected simultaneously in the presence of ascorbic acid. The LODs of DA and UA are calculated to be ∼0.8 and ∼0.6 µM, respectively. Hence, this study has the potential to open new insights into new surface activation strategies with a combination of one-step nanostructured metal depositions by a custom-made potentiostat. This novel strategy could be an excellent and straightforward method to enhance the electrochemical transducer sensitivity for various electrochemical sensing applications.


Assuntos
Técnicas Biossensoriais , Grafite , Nanopartículas Metálicas , Ácido Ascórbico , Dopamina , Técnicas Eletroquímicas , Eletrodos , Lasers , Prata , Ácido Úrico
12.
ACS Appl Mater Interfaces ; 13(34): 40460-40470, 2021 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-34415137

RESUMO

Self-powered sensors can lead to disruptive advances in self-sustainable sensing systems that are imperative for evolving human lifestyles. For the first time, we demonstrate the fabrication of a heterojunction sensor using p-type hybrid-halide perovskites (CH3NH3PbBr3) and an n-type semiconducting metal oxide thin film [InGaZnO (IGZO)] for the detection of NO2 gas and power generation. Combining the excellent photoelectric properties of perovskites and the remarkable gas-sensing properties of IGZO at room temperature, the devised sensors generate open-circuit voltage and modulate according to the ambient NO2 concentration. The major challenge in devising self-powered gas sensors is to attain harvesting capability and selectivity simultaneously, owing to perovskites reactivity in the presence of oxygen and humidity. In this work, we developed a novel approach and fabricated a heterojunction sensor using parylene-c as an additional layer to curb the cross-sensitivity and to enhance the selectivity of the sensor. Even under the low concentrations of NO2, the developed sensor exhibits remarkable sensitivity, selectivity, and repeatability. The devices are sensitive and robust even under extreme humidity conditions (80% RH) and synthetic air. The devised sensor configuration is one way to eliminate the cross-sensitivity issue of the perovskite-based devices and serves as a reference for the development of self-powered sensors.

13.
Anal Chem ; 93(24): 8585-8594, 2021 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-34081452

RESUMO

The global pandemic caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus has revealed the urgent need for accurate, rapid, and affordable diagnostic tests for epidemic understanding and management by monitoring the population worldwide. Though current diagnostic methods including real-time polymerase chain reaction (RT-PCR) provide sensitive detection of SARS-CoV-2, they require relatively long processing time, equipped laboratory facilities, and highly skilled personnel. Laser-scribed graphene (LSG)-based biosensing platforms have gained enormous attention as miniaturized electrochemical systems, holding an enormous potential as point-of-care (POC) diagnostic tools. We describe here a miniaturized LSG-based electrochemical sensing scheme for coronavirus disease 2019 (COVID-19) diagnosis combined with three-dimensional (3D) gold nanostructures. This electrode was modified with the SARS-CoV-2 spike protein antibody following the proper surface modifications proved by X-ray photoelectron spectroscopy (XPS) and scanning electron microscopy (SEM) characterizations as well as electrochemical techniques. The system was integrated into a handheld POC detection system operated using a custom smartphone application, providing a user-friendly diagnostic platform due to its ease of operation, accessibility, and systematic data management. The analytical features of the electrochemical immunoassay were evaluated using the standard solution of S-protein in the range of 5.0-500 ng/mL with a detection limit of 2.9 ng/mL. A clinical study was carried out on 23 patient blood serum samples with successful COVID-19 diagnosis, compared to the commercial RT-PCR, antibody blood test, and enzyme-linked immunosorbent assay (ELISA) IgG and IgA test results. Our test provides faster results compared to commercial diagnostic tools and offers a promising alternative solution for next-generation POC applications.


Assuntos
Técnicas Biossensoriais , COVID-19 , Grafite , Sistemas Automatizados de Assistência Junto ao Leito , Anticorpos Antivirais , COVID-19/diagnóstico , Teste para COVID-19 , Ouro , Humanos , Lasers , Nanoestruturas , SARS-CoV-2 , Sensibilidade e Especificidade , Glicoproteína da Espícula de Coronavírus
14.
J Phys Condens Matter ; 33(30)2021 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-33794513

RESUMO

Gas sensor technology is widely utilized in various areas ranging from home security, environment and air pollution, to industrial production. It also hold great promise in non-invasive exhaled breath detection and an essential device in future internet of things. The past decade has witnessed giant advance in both fundamental research and industrial development of gas sensors, yet current efforts are being explored to achieve better selectivity, higher sensitivity and lower power consumption. The sensing layer in gas sensors have attracted dominant attention in the past research. In addition to the conventional metal oxide semiconductors, emerging nanocomposites and graphene-like two-dimensional materials also have drawn considerable research interest. This inspires us to organize this comprehensive 2020 gas sensing materials roadmap to discuss the current status, state-of-the-art progress, and present and future challenges in various materials that is potentially useful for gas sensors.

15.
Biosens Bioelectron ; 180: 113116, 2021 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-33662847

RESUMO

Improvements in the laser-scribed graphene (LSG)-based electrodes are critical to overcoming limitations of bare LSG electrodes in terms of sensitivity, direct immobilization of detection probes for biosensor fabrication, and ease of integration with point-of-care (POC) devices. Herein, we introduce a new class of nanostructured gold modified LSG (LSG-AuNS) electrochemical sensing system comprising LSG-AuNS working electrode, LSG reference, and LSG counter electrode. LSG-AuNS electrodes are realized by electrodeposition of gold chloride (HAuCl4) solution, which gave~2-fold enhancement in sensitivity and electrocatalytic activity compared to bare LSG electrode and commercially available screen-printed gold electrode (SPAuE). We demonstrate LSG-AuNS electrochemical aptasensor for detecting human epidermal growth factor receptor 2 (Her-2) with a limit of detection (LOD) of 0.008 ng/mL and a linear range of 0.1-200 ng/mL. LSG-AuNS-aptasensor can easily detect different concentrations of Her-2 spiked in undiluted human serum. Finally, to show the LSG-AuNS sensor system's potential to develop POC biosensor devices, we integrated LSG-AuNS electrodes with a handheld electrochemical system operated using a custom-developed mobile application.


Assuntos
Técnicas Biossensoriais , Grafite , Nanopartículas Metálicas , Biomarcadores , Técnicas Eletroquímicas , Eletrodos , Ouro , Humanos , Lasers , Limite de Detecção , Testes Imediatos
16.
Nanomaterials (Basel) ; 11(1)2021 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-33435145

RESUMO

The Langmuir-Blodgett (LB) method is a well-known deposition technique for the fabrication of ordered monolayer and multilayer thin films of nanomaterials onto different substrates that plays a critical role in the development of functional devices for various applications. This paper describes detailed studies about the best coating configuration for nanoparticles of a porous metal-organic framework (MOF) onto both insulating or conductive threads and nylon fiber. We design and fabricate customized polymethylmethacrylate sheets (PMMA) holders to deposit MOF layers onto the threads or fiber using the LB technique. Two different orientations, namely, horizontal and vertical, are used to deposit MIL-96(Al) monolayer films onto five different types of threads and nylon fiber. These studies show that LB film formation strongly depends on deposition orientation and the type of threads or fiber. Among all the samples tested, cotton thread and nylon fiber with vertical deposition show more homogenous monolayer coverage. In the case of conductive threads, the MOF particles tend to aggregate between the conductive thread's fibers instead of forming a continuous monolayer coating. Our results show a significant contribution in terms of MOF monolayer deposition onto single fiber and threads that will contribute to the fabrication of single fiber or thread-based devices in the future.

17.
ACS Appl Mater Interfaces ; 12(51): 57218-57227, 2020 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-33289555

RESUMO

MXenes are a promising class of two-dimensional materials with several potential applications, including energy storage, catalysis, electromagnetic interference shielding, transparent electronics, and sensors. Here, we report a novel Mo2CTx MXene sensor for the successful detection of volatile organic compounds (VOCs). The proposed sensor is a chemiresistive device fabricated on a Si/SiO2 substrate using photolithography. The impact of various MXene process conditions on the performance of the sensor is evaluated. The VOCs, such as toluene, benzene, ethanol, methanol, and acetone, are studied at room temperature with varying concentrations. Under optimized conditions, the sensor demonstrates a detection limit of 220 ppb and a sensitivity of 0.0366 Ω/ppm at a toluene concentration of 140 ppm. It exhibits an excellent selectivity toward toluene against the other VOCs. Ab initio simulations demonstrate selectivity toward toluene in line with the experimental results.

18.
Sci Rep ; 10(1): 18931, 2020 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-33116274

RESUMO

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

19.
Sci Rep ; 10(1): 14703, 2020 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-32895394

RESUMO

Nanorange thickness graphite films (NGFs) are robust nanomaterials that can be produced via catalytic chemical vapour deposition but questions remain regarding their facile transfer and how surface topography may affect their application in next-generation devices. Here, we report the growth of NGFs (with an area of 55 cm2 and thickness of ~ 100 nm) on both sides of a polycrystalline Ni foil and their polymer-free transfer (front- and back-side, in areas up to 6 cm2). Due to the catalyst foil topography, the two carbon films differed in physical properties and other characteristics such as surface roughness. We demonstrate that the coarser back-side NGF is well-suited for NO2 sensing, whereas the smoother and more electrically conductive front-side NGF (2000 S/cm, sheet resistance - 50 Ω/sq) could be a viable conducting channel or counter electrode in solar cells (as it transmits 62% of visible light). Overall, the growth and transfer processes described could help realizing NGFs as an alternative carbon material for those technological applications where graphene and micrometer-thick graphite films are not an option.

20.
Biosens Bioelectron ; 168: 112565, 2020 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-32927277

RESUMO

Laser-derived graphene (LDG) technology is gaining attention as a promising material for the development of novel electrochemical sensors and biosensors. Compared to established methods for graphene synthesis, LDG provides many advantages such as cost-effectiveness, fast electron mobility, mask-free, green synthesis, good electrical conductivity, porosity, mechanical stability, and large surface area. This review discusses, in a critical way, recent advancements in this field. First, we focused on the fabrication and doping of LDG platforms using different strategies. Next, the techniques for the modification of LDG sensors using nanomaterials, conducting polymers, biological and artificial receptors are presented. We then discussed the advances achieved for various LDG sensing and biosensing schemes and their applications in the fields of environmental monitoring, food safety, and clinical diagnosis. Finally, the drawbacks and limitations of LDG based electrochemical biosensors are addressed, and future trends are also highlighted.


Assuntos
Técnicas Biossensoriais , Grafite , Nanoestruturas , Técnicas Eletroquímicas , Lasers
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...