Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Heliyon ; 10(9): e30469, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38737237

RESUMO

Working in a stem cell laboratory necessitates a thorough understanding of complex cell culture protocols, the operation of sensitive scientific equipment, adherence to safety standards, and general laboratory etiquette. For novice student researchers, acquiring the necessary specialized knowledge before their initial laboratory experience can be a formidable task. Similarly, for experienced laboratory personnel, efficiently and uniformly training new trainees to a rigorous standard presents a significant challenge. In response to these issues, we have developed an educational and interactive virtual cell culture environment. This interactive virtual lab aims to equip students with foundational knowledge in maintaining cortical brain organoids and to instill an understanding of pertinent safety procedures and laboratory etiquette. The gamification of this training process seeks to provide laboratory supervisors in highly specialized fields with an effective tool to integrate students into their work environments more rapidly and safely.

2.
bioRxiv ; 2024 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-38559212

RESUMO

The analysis of tissue cultures, particularly brain organoids, takes a high degree of coordination, measurement, and monitoring. We have developed an automated research platform enabling independent devices to achieve collaborative objectives for feedback-driven cell culture studies. Unified by an Internet of Things (IoT) architecture, our approach enables continuous, communicative interactions among various sensing and actuation devices, achieving precisely timed control of in vitro biological experiments. The framework integrates microfluidics, electrophysiology, and imaging devices to maintain cerebral cortex organoids and monitor their neuronal activity. The organoids are cultured in custom, 3D-printed chambers attached to commercial microelectrode arrays for electrophysiology monitoring. Periodic feeding is achieved using programmable microfluidic pumps. We developed computer vision fluid volume estimations of aspirated media, achieving high accuracy, and used feedback to rectify deviations in microfluidic perfusion during media feeding/aspiration cycles. We validated the system with a 7-day study of mouse cerebral cortex organoids, comparing manual and automated protocols. The automated experimental samples maintained robust neural activity throughout the experiment, comparable with the control samples. The automated system enabled hourly electrophysiology recordings that revealed dramatic temporal changes in neuron firing rates not observed in once-a-day recordings.

3.
Cell Rep Methods ; 4(1): 100686, 2024 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-38218190

RESUMO

Precise modulation of brain activity is fundamental for the proper establishment and maturation of the cerebral cortex. To this end, cortical organoids are promising tools to study circuit formation and the underpinnings of neurodevelopmental disease. However, the ability to manipulate neuronal activity with high temporal resolution in brain organoids remains limited. To overcome this challenge, we introduce a bioelectronic approach to control cortical organoid activity with the selective delivery of ions and neurotransmitters. Using this approach, we sequentially increased and decreased neuronal activity in brain organoids with the bioelectronic delivery of potassium ions (K+) and γ-aminobutyric acid (GABA), respectively, while simultaneously monitoring network activity. This works highlights bioelectronic ion pumps as tools for high-resolution temporal control of brain organoid activity toward precise pharmacological studies that can improve our understanding of neuronal function.


Assuntos
Córtex Cerebral , Neurônios , Neurônios/fisiologia , Organoides/fisiologia , Encéfalo , Neurotransmissores
4.
bioRxiv ; 2023 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-37333351

RESUMO

Precise modulation of brain activity is fundamental for the proper establishment and maturation of the cerebral cortex. To this end, cortical organoids are promising tools to study circuit formation and the underpinnings of neurodevelopmental disease. However, the ability to manipulate neuronal activity with high temporal resolution in brain organoids remains limited. To overcome this challenge, we introduce a bioelectronic approach to control cortical organoid activity with the selective delivery of ions and neurotransmitters. Using this approach, we sequentially increased and decreased neuronal activity in brain organoids with the bioelectronic delivery of potassium ions (K+) and γ-aminobutyric acid (GABA), respectively, while simultaneously monitoring network activity. This works highlights bioelectronic ion pumps as tools for high-resolution temporal control of brain organoid activity toward precise pharmacological studies that can improve our understanding of neuronal function.

5.
Commun Biol ; 5(1): 1367, 2022 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-36513728

RESUMO

Cancer cell lines have been widely used for decades to study biological processes driving cancer development, and to identify biomarkers of response to therapeutic agents. Advances in genomic sequencing have made possible large-scale genomic characterizations of collections of cancer cell lines and primary tumors, such as the Cancer Cell Line Encyclopedia (CCLE) and The Cancer Genome Atlas (TCGA). These studies allow for the first time a comprehensive evaluation of the comparability of cancer cell lines and primary tumors on the genomic and proteomic level. Here we employ bulk mRNA and micro-RNA sequencing data from thousands of samples in CCLE and TCGA, and proteomic data from partner studies in the MD Anderson Cell Line Project (MCLP) and The Cancer Proteome Atlas (TCPA), to characterize the extent to which cancer cell lines recapitulate tumors. We identify dysregulation of a long non-coding RNA and microRNA regulatory network in cancer cell lines, associated with differential expression between cell lines and primary tumors in four key cancer driver pathways: KRAS signaling, NFKB signaling, IL2/STAT5 signaling and TP53 signaling. Our results emphasize the necessity for careful interpretation of cancer cell line experiments, particularly with respect to therapeutic treatments targeting these important cancer pathways.


Assuntos
Neoplasias , Proteômica , Humanos , Multiômica , Neoplasias/genética , Neoplasias/metabolismo , Aprendizado de Máquina , Linhagem Celular
6.
Sci Rep ; 12(1): 20173, 2022 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-36418910

RESUMO

Organ-on-a-chip systems combine microfluidics, cell biology, and tissue engineering to culture 3D organ-specific in vitro models that recapitulate the biology and physiology of their in vivo counterparts. Here, we have developed a multiplex platform that automates the culture of individual organoids in isolated microenvironments at user-defined media flow rates. Programmable workflows allow the use of multiple reagent reservoirs that may be applied to direct differentiation, study temporal variables, and grow cultures long term. Novel techniques in polydimethylsiloxane (PDMS) chip fabrication are described here that enable features on the upper and lower planes of a single PDMS substrate. RNA sequencing (RNA-seq) analysis of automated cerebral cortex organoid cultures shows benefits in reducing glycolytic and endoplasmic reticulum stress compared to conventional in vitro cell cultures.


Assuntos
Organoides , Técnicas de Cultura de Células , Córtex Cerebral , Microfluídica
7.
Cells ; 11(18)2022 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-36139380

RESUMO

The cerebral cortex forms early in development according to a series of heritable neurodevelopmental instructions. Despite deep evolutionary conservation of the cerebral cortex and its foundational six-layered architecture, significant variations in cortical size and folding can be found across mammals, including a disproportionate expansion of the prefrontal cortex in humans. Yet our mechanistic understanding of neurodevelopmental processes is derived overwhelmingly from rodent models, which fail to capture many human-enriched features of cortical development. With the advent of pluripotent stem cells and technologies for differentiating three-dimensional cultures of neural tissue in vitro, cerebral organoids have emerged as an experimental platform that recapitulates several hallmarks of human brain development. In this review, we discuss the merits and limitations of cerebral organoids as experimental models of the developing human brain. We highlight innovations in technology development that seek to increase its fidelity to brain development in vivo and discuss recent efforts to use cerebral organoids to study regeneration and brain evolution as well as to develop neurological and neuropsychiatric disease models.


Assuntos
Células-Tronco Pluripotentes Induzidas , Células-Tronco Pluripotentes , Animais , Encéfalo , Humanos , Mamíferos , Neurogênese , Organoides
8.
Science ; 376(6588): eabl4178, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35357911

RESUMO

Existing human genome assemblies have almost entirely excluded repetitive sequences within and near centromeres, limiting our understanding of their organization, evolution, and functions, which include facilitating proper chromosome segregation. Now, a complete, telomere-to-telomere human genome assembly (T2T-CHM13) has enabled us to comprehensively characterize pericentromeric and centromeric repeats, which constitute 6.2% of the genome (189.9 megabases). Detailed maps of these regions revealed multimegabase structural rearrangements, including in active centromeric repeat arrays. Analysis of centromere-associated sequences uncovered a strong relationship between the position of the centromere and the evolution of the surrounding DNA through layered repeat expansions. Furthermore, comparisons of chromosome X centromeres across a diverse panel of individuals illuminated high degrees of structural, epigenetic, and sequence variation in these complex and rapidly evolving regions.


Assuntos
Centrômero/genética , Mapeamento Cromossômico , Epigênese Genética , Genoma Humano , Evolução Molecular , Genômica , Humanos , Sequências Repetitivas de Ácido Nucleico
9.
Adv Exp Med Biol ; 1363: 11-22, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35220563

RESUMO

Draft genome assemblies for multiple mammalian species combined with new technologies to map transcripts from diverse RNA samples to these genomes developed in the early 2000s revealed that the mammalian transcriptome was vastly larger and more complex than previously anticipated. Efforts to comprehensively catalog the identity and features of transcripts present in a variety of species, tissues and cell lines revealed that a large fraction of the mammalian genome is transcribed in at least some settings. A large number of these transcripts encode long non-coding RNAs (lncRNAs). Many lncRNAs overlap or are anti-sense to protein coding genes and others overlap small RNAs. However, a large number are independent of any previously known mRNA or small RNA. While the functions of a majority of these lncRNAs are unknown, many appear to play roles in gene regulation. Many lncRNAs have species-specific and cell type specific expression patterns and their evolutionary origins are varied. While technological challenges have hindered getting a full picture of the diversity and transcript structure of all of the transcripts arising from lncRNA loci, new technologies including single molecule nanopore sequencing and single cell RNA sequencing promise to generate a comprehensive picture of the mammalian transcriptome.


Assuntos
RNA Longo não Codificante , Transcriptoma , Animais , Perfilação da Expressão Gênica , Genoma/genética , Mamíferos/genética , Mamíferos/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , RNA Mensageiro/genética , Transcriptoma/genética
10.
Artigo em Inglês | MEDLINE | ID: mdl-37383277

RESUMO

The Internet of Things (IoT) provides a simple framework to control online devices easily. IoT is now a commonplace tool used by technology companies but is rarely used in biology experiments. IoT can benefit cloud biology research through alarm notifications, automation, and the real-time monitoring of experiments. We developed an IoT architecture to control biological devices and implemented it in lab experiments. Lab devices for electrophysiology, microscopy, and microfluidics were created from the ground up to be part of a unified IoT architecture. The system allows each device to be monitored and controlled from an online web tool. We present our IoT architecture so other labs can replicate it for their own experiments.

11.
Commun Biol ; 4(1): 1261, 2021 11 04.
Artigo em Inglês | MEDLINE | ID: mdl-34737378

RESUMO

Simultaneous longitudinal imaging across multiple conditions and replicates has been crucial for scientific studies aiming to understand biological processes and disease. Yet, imaging systems capable of accomplishing these tasks are economically unattainable for most academic and teaching laboratories around the world. Here, we propose the Picroscope, which is the first low-cost system for simultaneous longitudinal biological imaging made primarily using off-the-shelf and 3D-printed materials. The Picroscope is compatible with standard 24-well cell culture plates and captures 3D z-stack image data. The Picroscope can be controlled remotely, allowing for automatic imaging with minimal intervention from the investigator. Here, we use this system in a range of applications. We gathered longitudinal whole organism image data for frogs, zebrafish, and planaria worms. We also gathered image data inside an incubator to observe 2D monolayers and 3D mammalian tissue culture models. Using this tool, we can measure the behavior of entire organisms or individual cells over long-time periods.


Assuntos
Imageamento Tridimensional/métodos , Mamíferos , Planárias , Xenopus , Peixe-Zebra , Animais , Comportamento Animal , Mamíferos/fisiologia , Organoides/fisiologia , Planárias/anatomia & histologia , Planárias/fisiologia , Xenopus/anatomia & histologia , Xenopus/fisiologia , Peixe-Zebra/anatomia & histologia , Peixe-Zebra/fisiologia
12.
J Neural Eng ; 18(6)2021 11 12.
Artigo em Inglês | MEDLINE | ID: mdl-34666315

RESUMO

Objective.Neural activity represents a functional readout of neurons that is increasingly important to monitor in a wide range of experiments. Extracellular recordings have emerged as a powerful technique for measuring neural activity because these methods do not lead to the destruction or degradation of the cells being measured. Current approaches to electrophysiology have a low throughput of experiments due to manual supervision and expensive equipment. This bottleneck limits broader inferences that can be achieved with numerous long-term recorded samples.Approach.We developed Piphys, an inexpensive open source neurophysiological recording platform that consists of both hardware and software. It is easily accessed and controlled via a standard web interface through Internet of Things (IoT) protocols.Main results.We used a Raspberry Pi as the primary processing device along with an Intan bioamplifier. We designed a hardware expansion circuit board and software to enable voltage sampling and user interaction. This standalone system was validated with primary human neurons, showing reliability in collecting neural activity in near real-time.Significance.The hardware modules and cloud software allow for remote control of neural recording experiments as well as horizontal scalability, enabling long-term observations of development, organization, and neural activity at scale.


Assuntos
Computação em Nuvem , Software , Computadores , Eletrofisiologia/métodos , Humanos , Reprodutibilidade dos Testes
13.
Nature ; 594(7861): 77-81, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33953399

RESUMO

The divergence of chimpanzee and bonobo provides one of the few examples of recent hominid speciation1,2. Here we describe a fully annotated, high-quality bonobo genome assembly, which was constructed without guidance from reference genomes by applying a multiplatform genomics approach. We generate a bonobo genome assembly in which more than 98% of genes are completely annotated and 99% of the gaps are closed, including the resolution of about half of the segmental duplications and almost all of the full-length mobile elements. We compare the bonobo genome to those of other great apes1,3-5 and identify more than 5,569 fixed structural variants that specifically distinguish the bonobo and chimpanzee lineages. We focus on genes that have been lost, changed in structure or expanded in the last few million years of bonobo evolution. We produce a high-resolution map of incomplete lineage sorting and estimate that around 5.1% of the human genome is genetically closer to chimpanzee or bonobo and that more than 36.5% of the genome shows incomplete lineage sorting if we consider a deeper phylogeny including gorilla and orangutan. We also show that 26% of the segments of incomplete lineage sorting between human and chimpanzee or human and bonobo are non-randomly distributed and that genes within these clustered segments show significant excess of amino acid replacement compared to the rest of the genome.


Assuntos
Evolução Molecular , Genoma/genética , Genômica , Pan paniscus/genética , Filogenia , Animais , Fator de Iniciação 4A em Eucariotos/genética , Feminino , Genes , Gorilla gorilla/genética , Anotação de Sequência Molecular/normas , Pan troglodytes/genética , Pongo/genética , Duplicações Segmentares Genômicas , Análise de Sequência de DNA
14.
Gigascience ; 10(3)2021 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-33712853

RESUMO

BACKGROUND: The reproducibility of gene expression measured by RNA sequencing (RNA-Seq) is dependent on the sequencing depth. While unmapped or non-exonic reads do not contribute to gene expression quantification, duplicate reads contribute to the quantification but are not informative for reproducibility. We show that mapped, exonic, non-duplicate (MEND) reads are a useful measure of reproducibility of RNA-Seq datasets used for gene expression analysis. FINDINGS: In bulk RNA-Seq datasets from 2,179 tumors in 48 cohorts, the fraction of reads that contribute to the reproducibility of gene expression analysis varies greatly. Unmapped reads constitute 1-77% of all reads (median [IQR], 3% [3-6%]); duplicate reads constitute 3-100% of mapped reads (median [IQR], 27% [13-43%]); and non-exonic reads constitute 4-97% of mapped, non-duplicate reads (median [IQR], 25% [16-37%]). MEND reads constitute 0-79% of total reads (median [IQR], 50% [30-61%]). CONCLUSIONS: Because not all reads in an RNA-Seq dataset are informative for reproducibility of gene expression measurements and the fraction of reads that are informative varies, we propose reporting a dataset's sequencing depth in MEND reads, which definitively inform the reproducibility of gene expression, rather than total, mapped, or exonic reads. We provide a Docker image containing (i) the existing required tools (RSeQC, sambamba, and samblaster) and (ii) a custom script to calculate MEND reads from RNA-Seq data files. We recommend that all RNA-Seq gene expression experiments, sensitivity studies, and depth recommendations use MEND units for sequencing depth.


Assuntos
Neoplasias , RNA , Criança , Perfilação da Expressão Gênica , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Neoplasias/genética , Reprodutibilidade dos Testes , Análise de Sequência de RNA , Sequenciamento do Exoma
15.
Gigascience ; 9(12)2020 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-33319914

RESUMO

BACKGROUND: Diffuse midline gliomas with histone H3 K27M (H3K27M) mutations occur in early childhood and are marked by an invasive phenotype and global decrease in H3K27me3, an epigenetic mark that regulates differentiation and development. H3K27M mutation timing and effect on early embryonic brain development are not fully characterized. RESULTS: We analyzed multiple publicly available RNA sequencing datasets to identify differentially expressed genes between H3K27M and non-K27M pediatric gliomas. We found that genes involved in the epithelial-mesenchymal transition (EMT) were significantly overrepresented among differentially expressed genes. Overall, the expression of pre-EMT genes was increased in the H3K27M tumors as compared to non-K27M tumors, while the expression of post-EMT genes was decreased. We hypothesized that H3K27M may contribute to gliomagenesis by stalling an EMT required for early brain development, and evaluated this hypothesis by using another publicly available dataset of single-cell and bulk RNA sequencing data from developing cerebral organoids. This analysis revealed similarities between H3K27M tumors and pre-EMT normal brain cells. Finally, a previously published single-cell RNA sequencing dataset of H3K27M and non-K27M gliomas revealed subgroups of cells at different stages of EMT. In particular, H3.1K27M tumors resemble a later EMT stage compared to H3.3K27M tumors. CONCLUSIONS: Our data analyses indicate that this mutation may be associated with a differentiation stall evident from the failure to proceed through the EMT-like developmental processes, and that H3K27M cells preferentially exist in a pre-EMT cell phenotype. This study demonstrates how novel biological insights could be derived from combined analysis of several previously published datasets, highlighting the importance of making genomic data available to the community in a timely manner.


Assuntos
Glioma , Histonas , Diferenciação Celular/genética , Criança , Pré-Escolar , Transição Epitelial-Mesenquimal/genética , Glioma/genética , Histonas/genética , Humanos , Mutação
17.
Science ; 370(6523)2020 12 18.
Artigo em Inglês | MEDLINE | ID: mdl-33335035

RESUMO

The rhesus macaque (Macaca mulatta) is the most widely studied nonhuman primate (NHP) in biomedical research. We present an updated reference genome assembly (Mmul_10, contig N50 = 46 Mbp) that increases the sequence contiguity 120-fold and annotate it using 6.5 million full-length transcripts, thus improving our understanding of gene content, isoform diversity, and repeat organization. With the improved assembly of segmental duplications, we discovered new lineage-specific genes and expanded gene families that are potentially informative in studies of evolution and disease susceptibility. Whole-genome sequencing (WGS) data from 853 rhesus macaques identified 85.7 million single-nucleotide variants (SNVs) and 10.5 million indel variants, including potentially damaging variants in genes associated with human autism and developmental delay, providing a framework for developing noninvasive NHP models of human disease.


Assuntos
Predisposição Genética para Doença , Genoma , Macaca mulatta/genética , Polimorfismo de Nucleotídeo Único , Animais , Variação Genética , Humanos , Anotação de Sequência Molecular , Sequenciamento Completo do Genoma
18.
Front Immunol ; 11: 483296, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33244314

RESUMO

Somatic mutations in cancers affecting protein coding genes can give rise to potentially therapeutic neoepitopes. These neoepitopes can guide Adoptive Cell Therapies and Peptide- and RNA-based Neoepitope Vaccines to selectively target tumor cells using autologous patient cytotoxic T-cells. Currently, researchers have to independently align their data, call somatic mutations and haplotype the patient's HLA to use existing neoepitope prediction tools. We present ProTECT, a fully automated, reproducible, scalable, and efficient end-to-end analysis pipeline to identify and rank therapeutically relevant tumor neoepitopes in terms of potential immunogenicity starting directly from raw patient sequencing data, or from pre-processed data. The ProTECT pipeline encompasses alignment, HLA haplotyping, mutation calling (single nucleotide variants, short insertions and deletions, and gene fusions), peptide:MHC binding prediction, and ranking of final candidates. We demonstrate the scalability, efficiency, and utility of ProTECT on 326 samples from the TCGA Prostate Adenocarcinoma cohort, identifying recurrent potential neoepitopes from TMPRSS2-ERG fusions, and from SNVs in SPOP. We also compare ProTECT with results from published tools. ProTECT can be run on a standalone computer, a local cluster, or on a compute cloud using a Mesos backend. ProTECT is highly scalable and can process TCGA data in under 30 min per sample (on average) when run in large batches. ProTECT is freely available at https://www.github.com/BD2KGenomics/protect.


Assuntos
Antígenos de Neoplasias , Epitopos de Linfócito T , Imunoterapia , Neoplasias , Software , Linfócitos T Citotóxicos/imunologia , Antígenos de Neoplasias/genética , Antígenos de Neoplasias/imunologia , Epitopos de Linfócito T/genética , Epitopos de Linfócito T/imunologia , Humanos , Neoplasias/genética , Neoplasias/imunologia , Neoplasias/terapia , Valor Preditivo dos Testes
19.
Proc Natl Acad Sci U S A ; 117(32): 19328-19338, 2020 08 11.
Artigo em Inglês | MEDLINE | ID: mdl-32690705

RESUMO

Co-option of transposable elements (TEs) to become part of existing or new enhancers is an important mechanism for evolution of gene regulation. However, contributions of lineage-specific TE insertions to recent regulatory adaptations remain poorly understood. Gibbons present a suitable model to study these contributions as they have evolved a lineage-specific TE called LAVA (LINE-AluSz-VNTR-AluLIKE), which is still active in the gibbon genome. The LAVA retrotransposon is thought to have played a role in the emergence of the highly rearranged structure of the gibbon genome by disrupting transcription of cell cycle genes. In this study, we investigated whether LAVA may have also contributed to the evolution of gene regulation by adopting enhancer function. We characterized fixed and polymorphic LAVA insertions across multiple gibbons and found 96 LAVA elements overlapping enhancer chromatin states. Moreover, LAVA was enriched in multiple transcription factor binding motifs, was bound by an important transcription factor (PU.1), and was associated with higher levels of gene expression in cis We found gibbon-specific signatures of purifying/positive selection at 27 LAVA insertions. Two of these insertions were fixed in the gibbon lineage and overlapped with enhancer chromatin states, representing putative co-opted LAVA enhancers. These putative enhancers were located within genes encoding SETD2 and RAD9A, two proteins that facilitate accurate repair of DNA double-strand breaks and prevent chromosomal rearrangement mutations. Co-option of LAVA in these genes may have influenced regulation of processes that preserve genome integrity. Our findings highlight the importance of considering lineage-specific TEs in studying evolution of gene regulatory elements.


Assuntos
Genoma , Hylobates/genética , Retroelementos , Animais , Cromatina/genética , Evolução Molecular , Regulação da Expressão Gênica , Hylobates/classificação , Mutagênese Insercional , Sequências Reguladoras de Ácido Nucleico , Especificidade da Espécie
20.
PLoS Comput Biol ; 16(4): e1007753, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32275708

RESUMO

Precision oncology has primarily relied on coding mutations as biomarkers of response to therapies. While transcriptome analysis can provide valuable information, incorporation into workflows has been difficult. For example, the relative rather than absolute gene expression level needs to be considered, requiring differential expression analysis across samples. However, expression programs related to the cell-of-origin and tumor microenvironment effects confound the search for cancer-specific expression changes. To address these challenges, we developed an unsupervised clustering approach for discovering differential pathway expression within cancer cohorts using gene expression measurements. The hydra approach uses a Dirichlet process mixture model to automatically detect multimodally distributed genes and expression signatures without the need for matched normal tissue. We demonstrate that the hydra approach is more sensitive than widely-used gene set enrichment approaches for detecting multimodal expression signatures. Application of the hydra analysis framework to small blue round cell tumors (including rhabdomyosarcoma, synovial sarcoma, neuroblastoma, Ewing sarcoma, and osteosarcoma) identified expression signatures associated with changes in the tumor microenvironment. The hydra approach also identified an association between ATRX deletions and elevated immune marker expression in high-risk neuroblastoma. Notably, hydra analysis of all small blue round cell tumors revealed similar subtypes, characterized by changes to infiltrating immune and stromal expression signatures.


Assuntos
Perfilação da Expressão Gênica/métodos , Neoplasias/genética , Transcriptoma/genética , Biomarcadores Tumorais , Criança , Análise por Conglomerados , Biologia Computacional/métodos , Regulação Neoplásica da Expressão Gênica/genética , Humanos , Modelos Estatísticos , Neuroblastoma/genética , Medicina de Precisão/métodos , Microambiente Tumoral/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...