Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mutagenesis ; 25(3): 249-55, 2010 May.
Artigo em Inglês | MEDLINE | ID: mdl-20118186

RESUMO

Bacterial nitroreductases (NRs) catalyse the oxygen-insensitive reduction of several nitro-substituted compounds and quinones. SnrA and cnr NRs have been previously identified in Salmonella enterica serovar Typhimurium; they reduce several environmental nitro compounds that display mutagenic activity in the Ames test. Although some of their biochemical properties have been reported, the substrate specificity of each protein over mutagenic nitro compounds is unknown; even more, the possible relationship between their capacity to activate nitro compounds into mutagens and the redox properties of putative substrates has been poorly investigated. We have purified SnrA and cnr and investigated their capacity to activate several mutagens in the Ames test as well as their kinetic parameters K(m) and V(max). Our results show that SnrA and cnr are able to activate 2,7-dinitrofluorene with the same efficiency and a similar mutagenic potency in the YG7132 tester strain; 1-nitropyrene and 1,3-dinitropyrene were efficiently activated by cnr, whereas 1,8-dinitropyrene, 1,6-dinitropyrene and 2-nitrofluorene were scarcely activated by either NR. The mutagenic potency of nitro compounds obtained in the presence of either enzyme correlates with their redox potential reported in the literature. On the other hand, a good correlation was obtained between the catalytic efficiency (V(max)/K(m)) of the purified cnr with the redox potential of eight molecules including nitro-substituted compounds and quinones. No correlation between redox potential and catalytic efficiency by SnrA was observed, suggesting that factors other than redox potential such as the structure of the compounds are involved in the catalytic efficiency of SnrA.


Assuntos
Proteínas de Bactérias/metabolismo , Hidrocarbonetos Aromáticos/toxicidade , Nitrocompostos/toxicidade , Nitrorredutases/metabolismo , Quinonas/toxicidade , Salmonella typhimurium/efeitos dos fármacos , Salmonella typhimurium/enzimologia , Proteínas de Bactérias/isolamento & purificação , Biocatálise/efeitos dos fármacos , Técnicas Eletroquímicas , Ativação Enzimática/efeitos dos fármacos , Cinética , Testes de Mutagenicidade , Nitrorredutases/isolamento & purificação , Oxirredução/efeitos dos fármacos
2.
Mutagenesis ; 21(6): 369-74, 2006 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-16998228

RESUMO

A characterization of nitrocompounds activation by cell-free extracts (CFE) of wild-type (AB(+)), SnrA deficient (B(+)), Cnr deficient (A(+)) and SnrA/Cnr deficient (AB(-)) Salmonella typhimurium strains has been done. The Ames mutagenicity test (S. typhimurium his(+) reversion assay) was used, as well as nitroreductase (NR) activity determinations where the decrease in absorbance generated by nitrofurantoin (NFN) reduction and NADP(H) oxidation in the presence of NFN, nitrofurazone (NFZ), metronidazole (MTZ) and 4-nitroquinoline-1-oxide (4NQO) were followed. Different aromatic and heterocyclic compounds were tested for mutagenic activation: 2-nitrofluorene (2-NF); 2,7-dinitrofluorene (2,7-DNF); 1-nitropyrene (1-NP), 1,3-dinitropyrene (1,3-DNP); 1,6-dinitropyrene (1,6-DNP); and 1,8-dinitropyrene (1,8-DNP). Differential mutagenicity was found with individual cell free extracts, being higher when the wild type or Cnr containing extract was used; nevertheless, depending on the nitrocompound, activation was found when either NR, SnrA or Cnr, were present. In addition, all nitrocompounds were more mutagenic after metabolic activation by CFE of NR proficient strains, although AB(-) extract still showed activation capacity. On the other hand, NR activity was predominantly catalyzed by wild type CFE followed by A(+), B(+) and AB(-) extracts in that order. We can conclude that results from the Ames test indicate that Cnr is the major NR, while NFN and NFZ reductions were predominantly catalyzed by SnrA. The characterization of the residual NR activity detected by the mutagenicity assay and the biochemical determinations in the AB(-) CFE needs further investigation.


Assuntos
Nitrocompostos/metabolismo , Nitrorredutases/metabolismo , Salmonella typhimurium/enzimologia , Biotransformação , Sistema Livre de Células/metabolismo , Testes de Mutagenicidade , Mutagênicos/toxicidade , Salmonella typhimurium/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...