Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Nano Lett ; 10(2): 499-503, 2010 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-20050675

RESUMO

Recent studies and device demonstrations indicate that horizontally aligned arrays of linearly configured single-walled carbon nanotubes (SWNTs) can serve as an effective thin film semiconductor material, suitable for scalable use in high-performance transistors. This paper presents the results of systematic investigations of the dependence of device properties on channel length, to reveal the role of channel and contact resistance in the operation. The results indicate that, for the range of channel lengths and SWNT diameters studied here, source and drain contacts of Pd yield transistors with effectively Ohmic contacts that exhibit negligible dependence of their resistances on gate voltage. For devices that use Au, modulation of the resistance of the contacts represents a significant contribution to the response. Extracted values of the mobilities of the semiconducting SWNTs and the contact resistances associated with metallic and semiconducting SWNTs are consistent with previous reports on single tube test structures.

2.
Lab Chip ; 8(7): 1130-6, 2008 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-18584089

RESUMO

We present a novel, on-chip system for the electrokinetic capture of bacterial cells and their identification using the polymerase chain reaction (PCR). The system comprises a glass-silicon platform with a set of micro-channels, -chambers, and -electrodes. A platinum thin film resistor, placed in the proximity of the chambers, is used for temperature monitoring. The whole chip assembly is mounted on a Printed Circuit Board (PCB) and wire-bonded to it. The PCB has an embedded heater that is utilized for PCR thermal cycle and is controlled by a Lab-View program. Similar to our previous work, one set of electrodes on the chip inside the bigger chamber (0.6 microl volume) is used for diverting bacterial cells from a flowing stream into to a smaller chamber (0.4 nl volume). A second set of interdigitated electrodes (in smaller chamber) is used to actively trap and concentrate the bacterial cells using dielectrophoresis (DEP). In the presence of the DEP force, with the cells still entrapped in the micro-chamber, PCR mix is injected into the chamber. Subsequently, PCR amplification with SYBR Green detection is used for genetic identification of Listeria monocytogenes V7 cells. The increase in fluorescence is recorded with a photomultiplier tube module mounted over an epifluorescence microscope. This integrated micro-system is capable of genetic amplification and identification of as few as 60 cells of L. monocytogenes V7 in less than 90 min, in 600 nl volume collected from a sample of 10(4) cfu ml(-1). Specificity trials using various concentrations of L. monocytogenes V7, Listeria innocua F4248, and Escherichia coli O157:H7 were carried out successfully using two different primer sets specific for a regulatory gene of L. monocytogenes, prfA and 16S rRNA primer specific for the Listeria spp., and no cross-reactivity was observed.


Assuntos
Dispositivos Lab-On-A-Chip , Listeria monocytogenes/genética , Listeria monocytogenes/isolamento & purificação , Reação em Cadeia da Polimerase/instrumentação , Calibragem , Separação Celular/instrumentação , Condutividade Elétrica , Vidro/química , Listeria monocytogenes/citologia , Microeletrodos , Sensibilidade e Especificidade , Silício/química , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA