Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Bioeng Biotechnol ; 10: 787220, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35662843

RESUMO

The flying agility demonstrated by dragonflies is accomplished by means of complex aerodynamic forces produced by flapping their four wings arranged in a tandem configuration. The current study presents a novel tandem flapping wing mechanism for a biomimetic air vehicle that was designed and manufactured to experimentally investigate the aerodynamic forces. By optimizing the configuration and using spatial network analysis, it is shown that the designed structure can flap the wings in a linear up-down stroke motion and is capable of maintaining good consistency and aerodynamic performance. Such a mechanism could be used in a future biomimetic micro air vehicle (BMAV) design. The mechanism uses an electromagnetic actuator to flap the wings with a variable beat frequency (30-210 Hz) at various angles of attack (-10°-20°). The results show that the tandem wings generate approximately 50% higher lift than the forewing or hindwing pairs acting alone. Tandem wings also improve stability, which could potentially allow hovering.

2.
Carbohydr Polym ; 140: 202-8, 2016 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-26876845

RESUMO

This article presents an analysis of the influence of heat treatment on chitosan nanocomposite film. A series of samples comprising: pure chitosan film, chitosan film embedded with nanocrystalline cellulose (NCC), chitosan film crosslinked with tannic acid and chitosan film with a blend of NCC and tannic acid were heat treated using a convection oven. Fourier-transform-infrared spectroscopy (FTIR) and X-ray diffraction test (XRD) shows the changes in chemical interaction of the heat treated films. The heat treated films show significant improvements in moisture absorption. Tensile strength and Young's Modulus were increased up to 7MPa and 259MPa, respectively when the samples were subjected to heat treatment. For the NCC particles, a transmission electron microscope (TEM) was used to inspect the structural properties of cellulose particle in suspension form.


Assuntos
Celulose/química , Quitosana/química , Temperatura Alta , Nanocompostos/química , Nanopartículas/química , Taninos/química , Fenômenos Mecânicos , Água/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...