Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 137
Filtrar
1.
Proteomics ; : e2300056, 2023 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-37698557

RESUMO

Extracellular vesicles (EVs) are important mediators of embryo attachment and outgrowth critical for successful implantation. While EVs have garnered immense interest in their therapeutic potential in assisted reproductive technology by improving implantation success, their large-scale generation remains a major challenge. Here, we report a rapid and scalable production of nanovesicles (NVs) directly from human trophectoderm cells (hTSCs) via serial mechanical extrusion of cells; these NVs can be generated in approximately 6 h with a 20-fold higher yield than EVs isolated from culture medium of the same number of cells. NVs display similar biophysical traits (morphologically intact, spherical, 90-130 nm) to EVs, and are laden with hallmark players of implantation that include cell-matrix adhesion and extracellular matrix organisation proteins (ITGA2/V, ITGB1, MFGE8) and antioxidative regulators (PRDX1, SOD2). Functionally, NVs are readily taken up by low-receptive endometrial HEC1A cells and reprogram their proteome towards a receptive phenotype that support hTSC spheroid attachment. Moreover, a single dose treatment with NVs significantly enhanced adhesion and spreading of mouse embryo trophoblast on fibronectin matrix. Thus, we demonstrate the functional potential of NVs in enhancing embryo implantation and highlight their rapid and scalable generation, amenable to clinical utility.

2.
Biol Reprod ; 109(6): 839-850, 2023 12 11.
Artigo em Inglês | MEDLINE | ID: mdl-37602666

RESUMO

Creatine metabolism likely contributes to energy homeostasis in the human uterus, but whether this organ synthesizes creatine and whether creatine metabolism is adjusted throughout the menstrual cycle and with pregnancy are largely unknown. This study determined endometrial protein expression of creatine-synthesizing enzymes arginine:glycine amidinotransferase (AGAT) and guanidinoacetate methyltransferase (GAMT), creatine kinase (CKBB), and the creatine transporter (SLC6A8) throughout the menstrual cycle in fertile and primary infertile women. It also characterized creatine metabolism at term pregnancy, measuring aspects of creatine metabolism in myometrial and decidual tissue. In endometrial samples, AGAT, GAMT, SLC6A8, and CKBB were expressed in glandular and luminal epithelial cells. Except for SLC6A8, the other proteins were also located in stromal cells. Irrespective of fertility, AGAT, GAMT, and SLC6A8 high-intensity immunohistochemical staining was greatest in the early secretory phase of the menstrual cycle. During the proliferative phase, staining for SLC6A8 protein was greater (P = 0.01) in the primary infertile compared with the fertile group. Both layers of the term pregnant uterus contained creatine, phosphocreatine, guanidinoacetic acid, arginine, glycine, and methionine; detectable gene and protein expression of AGAT, GAMT, CKBB, and ubiquitous mitochondrial CK (uMt-CK); and gene expression of SLC6A8. The proteins AGAT, GAMT, CKBB, and SLC6A8 were uniformly distributed in the myometrium and localized to the decidual glands. In conclusion, endometrial tissue has the capacity to produce creatine and its capacity is highest around the time of fertilization and implantation. Both layers of the term pregnant uterus also contained all the enzymatic machinery and substrates of creatine metabolism.


Assuntos
Creatina , Infertilidade Feminina , Gravidez , Feminino , Humanos , Creatina/genética , Creatina/metabolismo , Útero/metabolismo , Ciclo Menstrual , Arginina
3.
Reprod Biomed Online ; 47(1): 35-50, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37142478

RESUMO

RESEARCH QUESTION: Advanced glycation end-products (AGE) are elevated in the uterine environment of obese infertile women. Can the detrimental effects of AGE on endometrial epithelial cells be mitigated with therapeutics, and recapitulated in a more physiologically relevant primary model (organoids)? DESIGN: Human endometrial epithelial cells (ECC-1) were exposed to AGE at concentrations physiologically representative of uterine fluid in lean or obese individuals, and three potential therapeutics: 25 nmol/l receptor for AGE (RAGE) antagonist FPS-ZM1, 100 µmol/l metformin, or a combination of antioxidants (10 µmol/l N-acetyl-l-cysteine, 10 µmol/l N-acetyl-l-carnitine and 5 µmol/l α-lipoic acid). Real-time cell analysis (xCELLigence, ACEA Biosciences) determined the rate of adhesion and proliferation. The proliferation of organoid-derived cells and secretion of cytokines from organoids was characterized in the presence of AGE (n = 5). The uterine fluid of women undergoing assisted reproduction was profiled for AGE-associated inflammatory markers (n = 77). RESULTS: ECC-1 proliferation was reduced by AGE from obese versus lean conditions and vehicle control (P = 0.04 and P < 0.001, respectively), and restored to a proliferation corresponding to lean conditions by antioxidants. AGE influenced organoid derived primary endometrial epithelial cell proliferation in a donor-dependent manner. AGE increased the organoid secretion of the proinflammatory cytokine CXCL16 (P = 0.006). Clinically, CXCL16 correlated positively to maternal body mass index (R = 0.264, P = 0.021) and intrauterine glucose concentration (R = 0.736, P < 0.0001). CONCLUSIONS: Physiologically relevant concentrations of AGE alter endometrial epithelial cell function. Antioxidants restore the rate of proliferation of AGE-treated endometrial epithelial (ECC-1) cells. Primary endometrial epithelial cells, cultured as organoids, demonstrate altered proliferation and CXCL16 secretion in the presence of AGE equimolar with the uterine fluid from obese individuals.


Assuntos
Infertilidade Feminina , Doenças Uterinas , Feminino , Humanos , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Produtos Finais de Glicação Avançada/metabolismo , Infertilidade Feminina/metabolismo , Reação de Maillard , Endométrio/metabolismo , Proliferação de Células , Obesidade/complicações , Obesidade/metabolismo , Receptor para Produtos Finais de Glicação Avançada
4.
Proteomics ; 23(6): e2200107, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36591946

RESUMO

Implantation success relies on intricate interplay between the developing embryo and the maternal endometrium. Extracellular vesicles (EVs) represent an important player of this intercellular signalling through delivery of functional cargo (proteins and RNAs) that reprogram the target cells protein and RNA landscape. Functionally, the signalling reciprocity of endometrial and embryo EVs regulates the site of implantation, preimplantation embryo development and hatching, antioxidative activity, embryo attachment, trophoblast invasion, arterial remodelling, and immune tolerance. Omics technologies including mass spectrometry have been instrumental in dissecting EV cargo that regulate these processes as well as molecular changes in embryo and endometrium to facilitate implantation. This has also led to discovery of potential cargo in EVs in human uterine fluid (UF) and embryo spent media (ESM) of diagnostic and therapeutic value in implantation success, fertility, and pregnancy outcome. This review discusses the contribution of EVs in functional hallmarks of embryo implantation, and how the integration of various omics technologies is enabling design of EV-based diagnostic and therapeutic platforms in reproductive medicine.


Assuntos
Implantação do Embrião , Vesículas Extracelulares , Feminino , Gravidez , Humanos , Implantação do Embrião/fisiologia , Vesículas Extracelulares/metabolismo , Desenvolvimento Embrionário , Endométrio/metabolismo , Trofoblastos/metabolismo
5.
Front Cell Dev Biol ; 10: 1078096, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36619864

RESUMO

A series of cyclical events within the uterus are crucial for pregnancy establishment. These include endometrial regeneration following menses, under the influence of estrogen (proliferative phase), then endometrial differentiation driven by estrogen/progesterone (secretory phase), to provide a microenvironment enabling attachment of embryo (as a hatched blastocyst) to the endometrial epithelium. This is followed by invasion of trophectodermal cells (the outer layer of the blastocyst) into the endometrium tissue to facilitate intrauterine development. Small extracellular vesicles (sEVs) released by endometrial epithelial cells during the secretory phase have been shown to facilitate trophoblast invasion; however, the molecular mechanisms that underline this process remain poorly understood. Here, we show that density gradient purified sEVs (1.06-1.11 g/ml, Alix+ and TSG101+, ∼180 nm) from human endometrial epithelial cells (hormonally primed with estrogen and progesterone vs. estrogen alone) are readily internalized by a human trophectodermal stem cell line and promote their invasion into Matrigel matrix. Mass spectrometry-based proteome analysis revealed that sEVs reprogrammed trophectoderm cell proteome and their cell surface proteome (surfaceome) to support this invasive phenotype through upregulation of pro-invasive regulators associated with focal adhesions (NRP1, PTPRK, ROCK2, TEK), embryo implantation (FBLN1, NIBAN2, BSG), and kinase receptors (EPHB4/B2, ERBB2, STRAP). Kinase substrate prediction highlighted a central role of MAPK3 as an upstream kinase regulating target cell proteome reprogramming. Phosphoproteome analysis pinpointed upregulation of MAPK3 T204/T202 phosphosites in hTSCs following sEV delivery, and that their pharmacological inhibition significantly abrogated invasion. This study provides novel molecular insights into endometrial sEVs orchestrating trophoblast invasion, highlighting the microenvironmental regulation of hTSCs during embryo implantation.

6.
Development ; 148(17)2021 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-34486650

RESUMO

Uniquely among adult tissues, the human endometrium undergoes cyclical shedding, scar-free repair and regeneration during a woman's reproductive life. Therefore, it presents an outstanding model for study of such processes. This Review examines what is known of endometrial repair and regeneration following menstruation and parturition, including comparisons with wound repair and the influence of menstrual fluid components. We also discuss the contribution of endometrial stem/progenitor cells to endometrial regeneration, including the importance of the stem cell niche and stem cell-derived extracellular vesicles. Finally, we comment on the value of endometrial epithelial organoids to extend our understanding of endometrial development and regeneration, as well as therapeutic applications.


Assuntos
Endométrio/fisiologia , Regeneração , Proliferação de Células , Endométrio/citologia , Vesículas Extracelulares/metabolismo , Feminino , Humanos , Técnicas In Vitro , Menstruação , Parto , Células-Tronco/citologia , Células-Tronco/metabolismo
7.
Mol Hum Reprod ; 27(10)2021 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-34524461

RESUMO

Adequate endometrial stromal cell (ESC) decidualization is vital for endometrial health. Given the importance of extracellular vesicles (EVs) in intercellular communication, we investigated how their protein landscape is reprogrammed and dysregulated during decidual response. Small EVs (sEVs) from human ESC-conditioned media at Day-2 and -14 following decidual stimuli were grouped as well- (WD) or poorly decidualized (PD) based on their prolactin secretion and subjected to mass spectrometry-based quantitative proteomics. On Day 2, in PD- versus WD-ESC-sEVs, 17 sEV- proteins were down-regulated (C5, C6; complement/coagulation cascades, and SERPING1, HRG; platelet degranulation and fibrinolysis) and 39 up-regulated (FLNA, COL1A1; focal adhesion, ENO1, PKM; glycolysis/gluconeogenesis, and RAP1B, MSN; leukocyte transendothelial migration). On Day 14, in PD- versus WD-ESC-sEVs, FLNA was down-regulated while 21 proteins were up-regulated involved in complement/coagulation cascades (C3, C6), platelet degranulation (SERPINA4, ITIH4), B-cell receptor signalling and innate immune response (immunoglobulins). Changes from Days 2 to 14 suggested a subsequent response in PD-ESC-sEVs with 89 differentially expressed proteins mostly involved in complement and coagulation cascades (C3, C6, C5), but no change in WD-ESC-sEVs ESC. Poor decidualization was also associated with loss of crucial sEV-proteins for cell adhesion and invasion (ITGA5, PFN1), glycolysis (ALDOA, PGK1) and cytoskeletal reorganization (VCL, RAC1). Overall, this study indicates varied ESC response even prior to decidualization and provides insight into sEVs-proteomes as a benchmark of well-decidualized ESC. It shows distinct variation in sEV-protein composition depending on the ESC decidual response that is critical for embryo implantation, enabling and limiting trophoblast invasion during placentation and sensing a healthy embryo.


Assuntos
Endométrio/metabolismo , Vesículas Extracelulares/metabolismo , Fibroblastos/metabolismo , Proteoma , Células Estromais/metabolismo , Adulto , Células Cultivadas , Decídua/metabolismo , Implantação do Embrião , Endométrio/efeitos dos fármacos , Endométrio/ultraestrutura , Estradiol/farmacologia , Vesículas Extracelulares/efeitos dos fármacos , Vesículas Extracelulares/ultraestrutura , Feminino , Fibroblastos/efeitos dos fármacos , Fibroblastos/ultraestrutura , Humanos , Acetato de Medroxiprogesterona/farmacologia , Placentação , Gravidez , Proteômica , Células Estromais/efeitos dos fármacos , Células Estromais/ultraestrutura , Fatores de Tempo , Adulto Jovem
8.
Proteomics ; 21(13-14): e2000210, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33860638

RESUMO

Embryo implantation into the receptive endometrium is critical in pregnancy establishment, initially requiring reciprocal signalling between outer layer of the blastocyst (trophectoderm cells) and endometrial epithelium; however, factors regulating this crosstalk remain poorly understood. Although endometrial extracellular vesicles (EVs) are known to signal to the embryo during implantation, the role of embryo-derived EVs remains largely unknown. Here, we provide a comprehensive proteomic characterisation of a major class of EVs, termed small EVs (sEVs), released by human trophectoderm cells (Tsc-sEVs) and their capacity to reprogram protein landscape of endometrial epithelium in vitro. Highly purified Tsc-sEVs (30-200 nm, ALIX+ , TSG101+ , CD9/63/81+ ) were enriched in known players of implantation (LIFR, ICAM1, TAGLN2, WNT5A, FZD7, ROR2, PRICKLE2), antioxidant activity (SOD1, PRDX1/4/6), tissue integrity (EZR, RAC1, RHOA, TNC), and focal adhesions (FAK, ITGA2/V, ITGB1/3). Functionally, Tsc-sEVs were taken up by endometrial cells, altered transepithelial electrical resistance, and upregulated proteins implicated in embryo attachment (ITGA2/V, ITGB1/3), immune regulation (CD59, CD276, LGALS3), and antioxidant activity (GPX1/3/4, PRDX1/2/4/5/6): processes that are critical for successful implantation. Collectively, we provide critical insights into Tsc-sEV-mediated regulation of endometrial function that contributes to our understanding of the molecular basis of implantation.


Assuntos
Vesículas Extracelulares , Proteoma , Antígenos B7 , Implantação do Embrião , Endométrio , Células Epiteliais , Feminino , Humanos , Proteínas com Domínio LIM , Proteínas de Membrana , Gravidez , Proteômica
9.
Proteomics ; 21(13-14): e2000211, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33634576

RESUMO

Endometrial extracellular vesicles (EVs) are emerging as important players in reproductive biology. However, how their proteome is regulated throughout the menstrual cycle is not known. Such information can provide novel insights into biological processes critical for embryo development, implantation, and successful pregnancy. Using mass spectrometry-based quantitative proteomics, we show that small EVs (sEVs) isolated from uterine lavage of fertile women (UL-sEV), compared to infertile women, are laden with proteins implicated in antioxidant activity (SOD1, GSTO1, MPO, CAT). Functionally, sEVs derived from endometrial cells enhance antioxidant function in trophectoderm cells. Moreover, there was striking enrichment of invasion-related proteins (LGALS1/3, S100A4/11) in fertile UL-sEVs in the secretory (estrogen plus progesterone-driven, EP) versus proliferative (estrogen-driven, E) phase, with several players downregulated in infertile UL-sEVs. Consistent with this, sEVs from EP- versus E-primed endometrial epithelial cells promote invasion of trophectoderm cells. Interestingly, UL-sEVs from fertile versus infertile women carry known players/predictors of embryo implantation (PRDX2, IDHC), endometrial receptivity (S100A4, FGB, SERPING1, CLU, ANXA2), and implantation success (CAT, YWHAE, PPIA), highlighting their potential to inform regarding endometrial status/pregnancy outcomes. Thus, this study provides novel insights into proteome reprograming of sEVs and soluble secretome in uterine fluid, with potential to enhance embryo implantation and hence fertility.


Assuntos
Vesículas Extracelulares , Infertilidade Feminina , Implantação do Embrião , Endométrio , Feminino , Fertilidade , Glutationa Transferase , Humanos , Ciclo Menstrual , Gravidez , Proteoma , Proteômica
10.
Mol Cell Endocrinol ; 526: 111193, 2021 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-33610643

RESUMO

Evidence is presented for expression of the insulin receptor on the surface of mammalian spermatozoa as well as transcripts for the receptor substrate adaptor proteins (IRS1-4) needed to mediate insulin action. Exposure to this hormone resulted in insulin receptor phosphorylation (pTyr972), activation of AKT (pSer473) and the stimulation of sperm motility. Intriguingly, the male germ line is also shown to be capable of generating insulin, possessing the relevant mRNA transcript and expressing strong immunocytochemical signals for both insulin and C-peptide. Insulin could be released from the spermatozoa by sonication in a concentration-dependent manner but was not secreted in response to glucose, fructose or stimulation with progesterone. However, insulin release could be induced by factors present in human uterine lavages. Furthermore, the endometrium was also shown to possess the machinery for insulin production and action (mRNA, insulin, C-peptide, proprotein convertase and insulin receptor), releasing insulin into the uterine lumen prior to ovulation. These studies emphasize the fundamental importance of extra-pancreatic insulin in regulating the reproductive process, particularly in the support of spermatozoa on their perilous voyage to the site of fertilization.


Assuntos
Insulina/biossíntese , Pâncreas/metabolismo , Espermatozoides/citologia , Espermatozoides/metabolismo , Animais , Peptídeo C/metabolismo , Sobrevivência Celular , Endométrio/metabolismo , Epitélio/metabolismo , Feminino , Células Germinativas/metabolismo , Humanos , Proteínas Substratos do Receptor de Insulina/metabolismo , Secreção de Insulina , Masculino , Mamíferos/metabolismo , Camundongos , Isoformas de Proteínas/metabolismo , Ratos , Receptor de Insulina/metabolismo , Útero/metabolismo
11.
Front Reprod Health ; 3: 779979, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-36304016

RESUMO

Menstruation is a process whereby the outer functionalis layer of the endometrium is shed each month in response to falling progesterone and estrogen levels in a non-conception cycle. Simultaneously with the tissue breakdown, the surface is re-epithelialized, protecting the wound from infection. Once menstruation is complete and estrogen levels start to rise, regeneration progresses throughout the proliferative phase of the cycle, to fully restore endometrial thickness. Endometrial repair is unique compared to tissue repair elsewhere in the adult, in that it is rapid, scar-free and occurs around 400 times during each modern woman's reproductive life. The shedding tissue and that undergoing repair is bathed in menstrual fluid, which contains live cells, cellular debris, fragments of extracellular matrix, activated leukocytes and their products, soluble cellular components and extracellular vesicles. Proteomic and other analyses have revealed some detail of these components. Menstrual fluid, along with a number of individual proteins enhances epithelial cell migration to cover the wound. This is shown in endometrial epithelial and keratinocyte cell culture models, in an ex vivo decellularized skin model and in pig wounds in vivo. Thus, the microenvironment provided by menstrual fluid, is likely responsible for the unique rapid and scar-free repair of this remarkable tissue. Insight gained from analysis of this fluid is likely to be of value not only for treating endometrial bleeding problems but also in providing potential new therapies for poorly repairing wounds such as those seen in the aged and in diabetics.

12.
Reprod Biomed Online ; 41(5): 757-766, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32972872

RESUMO

RESEARCH QUESTION: Proinflammatory advanced glycation end products (AGE), highly elevated within the uterine cavity of obese women, compromise endometrial function. Do AGE also impact preimplantation embryo development and function? DESIGN: Mouse embryos were cultured in AGE equimolar to uterine fluid concentrations in lean (1-2 µmol/l) or obese (4-8 µmol/l) women. Differential nuclear staining identified cell allocation to inner cell mass (ICM) and trophectoderm (TE) (day 4 and 5 of culture). Cell apoptosis was examined by terminal deoxynucleotidyl transferase-mediated dUDP nick-end labelling assay (day 5). Day 4 embryos were placed on bovine serum albumin/fibronectin-coated plates and embryo outgrowth assessed 93 h later as a marker of implantation potential. AGE effects on cell lineage allocation were reassessed following pharmacological interventions: either 12.5 nmol/l AGE receptor (RAGE) antagonist; 0.1 nmol/l metformin; or combination of 10 µmol/l acetyl-l-carnitine, 10 µmol/l N-acetyl-l-cysteine, and 5 µmol/l alpha-lipoic acid. RESULTS: 8 µmol/l AGE reduced: hatching rates (day 5, P < 0.01); total cell number (days 4, 5, P < 0.01); TE cell number (day 5, P < 0.01), and embryo outgrowth (P < 0.01). RAGE antagonism improved day 5 TE cell number. CONCLUSIONS: AGE equimolar with the obese uterine environment detrimentally impact preimplantation embryo development. In natural cycles, prolonged exposure to AGE may developmentally compromise embryos, whereas following assisted reproductive technology cycles, placement of a high-quality embryo into an adverse 'high AGE' environment may impede implantation success. The modest impact of short-term RAGE antagonism on improving embryo outcomes indicates preconception AGE reduction via pharmacological or dietary intervention may improve reproductive outcomes for overweight/obese women.


Assuntos
Desenvolvimento Embrionário/fisiologia , Produtos Finais de Glicação Avançada/metabolismo , Obesidade/metabolismo , Útero/metabolismo , Animais , Apoptose/efeitos dos fármacos , Apoptose/fisiologia , Benzamidas/farmacologia , Técnicas de Cultura Embrionária , Desenvolvimento Embrionário/efeitos dos fármacos , Feminino , Camundongos , Receptor para Produtos Finais de Glicação Avançada/antagonistas & inibidores , Útero/efeitos dos fármacos
13.
Hum Reprod ; 35(6): 1363-1376, 2020 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-32488243

RESUMO

STUDY QUESTION: Does NLRP3 (NOD-, LRR- and pyrin domain-containing protein 3) inflammasome activation within decidualized endometrial stromal cells accompany menstruation and is this reflected systemically? SUMMARY ANSWER: Components of the NLRP3 inflammasome immunolocalize to decidualized endometrial stromal cells immediately prior to menstruation, and are activated in an in vitro model of menstruation, as evidenced by downstream interleukin (IL)-1beta and IL-18 release, this being reflected systemically in vivo. WHAT IS KNOWN ALREADY: Menstruation is a highly inflammatory event associated with activation of NFκB (nuclear factor kappa-light-chain-enhancer of activated B cells), local release of chemokines and cytokines and inflammatory leukocyte influx. Systemically, chemokines and cytokines fluctuate across the menstrual cycle. STUDY DESIGN, SIZE, DURATION: This study examined the NLRP3 inflammasome and activation of downstream IL-1beta and IL-18 in endometrial tissues from women of known fertility (≥1 previous parous pregnancy) across the menstrual cycle (n ≥ 8 per cycle phase), serum from women during the proliferative, secretory and menstrual phases (≥9 per cycle phase) of the cycle and menstrual fluid collected on Day 2 of menses (n = 18). Endometrial stromal cells isolated from endometrial tissue biopsies (n = 10 in total) were used for an in vitro model of pre-menstrual hormone withdrawal. PARTICIPANTS/MATERIALS, SETTING, METHODS: Expression and localization of components of the NLRP3 inflammasome (NLRP3 & apoptosis-associated speck-caspase recruit domain [ASC]) in endometrial tissues was performed by immunohistochemistry. Unbiased digital quantification of immunohistochemical staining allowed determination of different patterns of expression across the menstrual cycle. Serum from women across the menstrual cycle was examined for IL-1beta and IL-18 concentrations by ELISA. An in vitro model of hormone withdrawal from estrogen/progestin decidualized endometrial stromal cells was used to more carefully examine activation of the NLRP3 inflammasome. Endometrial stromal cells isolated from endometrial tissue biopsies (n = 10) were treated with estrogen/medroxyprogesterone acetate for 12 days to induce decidualization (assessed by release of prolactin) followed by withdrawal of steroid hormone support. Activation of NLRP3, & ASC in these cells was examined on Days 0-3 after hormone withdrawal by Western immunoblotting. Release of IL-1beta and IL-18 examined during decidualization and across the same time course of hormone withdrawal by ELISA. Specific involvement of NLRP3 inflammasome activation in IL-1beta and IL-18 release after hormone withdrawal was investigated via application of the NLRP3 inflammasome inhibitor MCC950 at the time of hormone withdrawal. MAIN RESULTS AND THE ROLE OF CHANCE: Critical components of the NLRP3 inflammasome (NLRP3, ASC) were increased in menstrual phase endometrial tissues versus early secretory phase tissues (P < 0.05, n/s, respectively). NLRP3 and ASC were also elevated in the proliferative versus secretory phase of the cycle (P < 0.01, n/s, respectively) with ASC also significantly increased in the late-secretory versus early-secretory phase (P < 0.05). The pattern of activation was reflected in systemic levels of the inflammasome mediators, with IL-1beta and IL-18 elevated in peripheral blood serum during menstruation (Day 2 of menses) versus secretory phase (P = 0.026, P = 0.0042, respectively) and significantly elevated in menstrual fluid (Day 2 of menses) versus systemic levels across all cycle phases, suggesting that local inflammasome activation within the endometrium during menses is reflected by systemic inflammation. NLRP3 and ASC localized to decidualized cells adjacent to the spiral arterioles in the late secretory phase of the menstrual cycle, where the menstrual cascade is thought to be initiated, and to endometrial leukocytes during the menstrual phase. NLRP3 also localized to glandular epithelial cells during the late-secretory/menstrual phases. Localization of both NLRP3 and ASC switched from predominant epithelial localization during the early-secretory phase to stromal localization during the late-secretory/menstrual phase. Using an in vitro model of hormone withdrawal from decidualized human endometrial stromal cells, we demonstrated progressive activation of NLRP3 and ASC after hormone withdrawal increasing from Day 0 of withdrawal/Day 12 of decidualization to Day 3 of withdrawal. Downstream release of IL-1beta and IL-18 from decidualized stromal cells after hormone withdrawal followed the same pattern with the role of NLRP3 inflammasome activation confirmed via the inhibition of IL-1beta and IL-18 release upon application of MCC950. LARGE SCALE DATA: N/A. LIMITATIONS, REASONS FOR CAUTION: This study uses descriptive and semi-quantitative measures of NLRP3 inflammasome activation within endometrial tissues. Further, the in vitro model of pre-menstrual hormone withdrawal may not accurately recapitulate the in vivo environment as only one cell type is present and medroxyprogesterone acetate replaced natural progesterone due to its longer stability. WIDER IMPLICATIONS OF THE FINDINGS: We provide novel evidence that the NLRP3 inflammasome is activated within decidualized endometrial stromal cells immediately prior to menses and that local activation of the inflammasome within the endometrium appears to be reflected systemically in by activation of downstream IL-1beta and IL-18. Given the prevalence of menstrual disorders associated with inflammation including dysmenorrhoea and aspects of pre-menstrual syndrome, the inflammasome could be a novel target for ameliorating such burdens. STUDY FUNDING/COMPETING INTEREST(S): The authors have no competing interests. J.E. was supported by a Fielding Foundation fellowship, NHMRC project grants (#1139489 and #1141946) and The Hudson Institute of Medical Research. L.A.S. was supported by The Hudson Institute of Medical Research and J.H. by an Australian Government Research Training Program Scholarship. We acknowledge the Victorian Government's Operating Infrastructure funding to the Hudson Institute. TRIAL REGISTRATION NUMBER: N/A.


Assuntos
Inflamassomos , Menstruação , Austrália , Endométrio , Feminino , Humanos , Ciclo Menstrual , Gravidez
14.
Mol Hum Reprod ; 26(7): 498-509, 2020 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-32449756

RESUMO

Current treatment options for uterine fibroids are limited to hormonal manipulation or surgical intervention. We aimed to develop an in vitro model to mirror collagen deposition and extracellular matrix (ECM) formation, the principal features of uterine fibroids, to enable testing of novel therapeutics. Macromolecular crowding with Ficoll 400 and Ficoll 70 in cultures of human uterine myometrial smooth muscle cells containing ascorbic acid, provided the basis for this model. These culture conditions mimic the 'crowded' nature of the in vivo extracellular environment by incorporating neutral, space-filling macromolecules into conventional cell cultures. This method of culture facilitates appropriate ECM deposition, thus closely representing the in vivo fibrotic phenotype of uterine fibroids. Macromolecular crowding in Ficoll cultures containing ascorbic acid reduced myometrial smooth muscle cell proliferation and promoted collagen production. Under these conditions, collagen was processed for extracellular deposition as demonstrated by C-propeptide cleavage from secreted procollagen. The fibrosis marker activin was increased relative to its natural inhibitor, follistatin, in crowded culture conditions while addition of exogenous follistatin reduced collagen (Col1A1) gene expression. This in vitro model represents a promising development for the testing of therapeutic interventions for uterine fibroids. However, it does not recapitulate the full in vivo pathology which can include specific genetic and epigenetic alterations that have not been identified in the myometrial smooth muscle (hTERT-HM) cell line. Following screening of potential therapeutics using the model, the most promising compounds will require further assessment in the context of individual subjects including those with genetic changes implicated in fibroid pathogenesis.


Assuntos
Matriz Extracelular/metabolismo , Leiomioma/metabolismo , Miócitos de Músculo Liso/metabolismo , Miométrio/metabolismo , Neoplasias Uterinas/metabolismo , Colágeno/metabolismo , Feminino , Humanos
15.
J Assist Reprod Genet ; 37(1): 5-16, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31776756

RESUMO

OBJECTIVE: To establish a model of human implantation that responds to hormonal stimuli and can differentiate between endometrium from fertile women and those with idiopathic infertility. DESIGN: A trophoblast stem cell (trophectodermal) line (TSC; derived from human pre-implantation embryo) was used to form trophectodermal spheroids (TS). TS attachment to monolayers of endometrial epithelial cell lines or primary endometrial epithelial cells (pHEECs) was determined. SETTING: Independent Medical Research Institute with close clinical linkages INTERVENTIONS: Spheroid attachment and outgrowth was determined with added hormones (estradiol 17ß (E), E + medroxyprogesterone acetate (MPA) or E + MPA + human chorionic gonadotropin (hCG)). Spheroid attachment to E/MPA treated pHEEC prepared from fertile women or those with idiopathic infertility tested. MAIN OUTCOME MEASURE: Firmly attached spheroids counted after co-culture for 6 h. Outgrowth was determined by quantitation of area covered by spheroid after firm adhesion. RESULTS: Functional adhesion of TS to two endometrial epithelial cell lines, Ishikawa and ECC-1 cells, was hormonally responsive, with adhesion/outgrowth increased by E/MPA (ECC-1; p < 0.01, Ishikawa; p < 0.01) and E/MPA/hCG (ECC-1; p < 0.001, Ishikawa p < 0.01) versus E alone. The same pattern of hormone responsiveness was observed in pHEEC obtained from fertile women (E vs, E/MPA; p < 0.01, E vs. E/MPA/hCG; p < 0.001). TS adhered to 85% of pHEEC obtained from fertile women (11/13) and 11% of pHEEC obtained from women with unexplained infertility (2/18, p < 0.001). CONCLUSION: This new model of "embryo" implantation largely discriminates between endometrial epithelial cells obtained from fertile vs. infertile women based on adhesion; this holds potential as an in vitro "diagnostic" tool of endometrial infertility.


Assuntos
Adesão Celular , Embrião de Mamíferos/fisiologia , Endométrio/fisiologia , Estradiol/farmacologia , Fertilidade/fisiologia , Infertilidade Feminina/fisiopatologia , Trofoblastos/fisiologia , Técnicas de Cocultura , Implantação do Embrião , Embrião de Mamíferos/citologia , Embrião de Mamíferos/efeitos dos fármacos , Endométrio/citologia , Endométrio/efeitos dos fármacos , Células Epiteliais/citologia , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/fisiologia , Estrogênios/farmacologia , Feminino , Fertilidade/efeitos dos fármacos , Humanos , Infertilidade Feminina/tratamento farmacológico , Esferoides Celulares/citologia , Esferoides Celulares/efeitos dos fármacos , Esferoides Celulares/fisiologia , Trofoblastos/citologia , Trofoblastos/efeitos dos fármacos
16.
Proteomics ; 20(1): e1900250, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31825151

RESUMO

In vitro fertilization has overcome infertility issues for many couples. However, achieving implantation of a viable embryo into the maternal endometrium remains a limiting step in optimizing pregnancy success. The molecular mechanisms which characterize the transient state of endometrial receptivity, critical in enabling embryo-endometrial interactions, and proteins which underpin adhesion at the implantation interface, are limited in humans despite these temporally regulated processes fundamental to life. Hence, failure of implantation remains the "final frontier" in infertility. A human coculture model is utilized utilizing spheroids of a trophectoderm (trophoblast stem) cell line, derived from pre-implantation human embryos, and primary human endometrial epithelial cells, to functionally identify "fertile" versus "infertile" endometrial epithelium based on adhesion between these cell types. Quantitative proteomics identified proteins associated with human endometrial epithelial receptivity ("epithelial receptome") and trophectoderm adhesion ("adhesome"). As validation, key "epithelial receptome" proteins (MAGT-1/CDA/LGMN/KYNU/PC4) localized to the epithelium of receptive phase (mid-secretory) endometrium obtained from fertile, normally cycling women but is largely absent from non-receptive (proliferative) phase tissues. Factors involved in embryo-epithelium interaction in successive temporal stages of endometrial receptivity and implantation are demonstrated and potential targets for improving fertility are provided, enhancing potential to become pregnant either naturally or in a clinical setting.


Assuntos
Implantação do Embrião , Embrião de Mamíferos/metabolismo , Endométrio/metabolismo , Proteoma/metabolismo , Proteômica/métodos , Trofoblastos/metabolismo , Adulto , Linhagem Celular , Técnicas de Cocultura , Embrião de Mamíferos/citologia , Desenvolvimento Embrionário , Endométrio/citologia , Células Epiteliais/citologia , Células Epiteliais/metabolismo , Epitélio/metabolismo , Feminino , Fertilidade , Humanos , Gravidez , Trofoblastos/citologia
17.
Sci Rep ; 9(1): 15495, 2019 10 29.
Artigo em Inglês | MEDLINE | ID: mdl-31664088

RESUMO

The yin and yang of female fertility is a complicated issue; large numbers of women/couples desire fertility and seek assisted reproduction intervention to achieve conception, while others seek to prevent pregnancy. Understanding specific molecules which control endometrial-embryo interactions is essential for both facilitating and preventing pregnancy. SOX17 has recently emerged as an important transcription factor involved in endometrial receptivity and embryo implantation. However, studies to date have examined mouse models of pregnancy which do not necessarily translate to the human. Demonstration of a role for 'implantation factors' in a human system is critical to provide a rationale for in depth clinical investigation and targeting of such factors. We demonstrate that SOX17is present within the receptive human endometrium and is up-regulated within human endometrial epithelial cells by combined estrogen & progesterone, the hormonal milieu during the receptive window. SOX17 localizes to the point of adhesive contact between human endometrial epithelial cells and a human 'embryo mimic' model (trophectodermal spheroid). Targeting SOX17 in endometrial epithelial cells using CRISPR/Cas9 knockdown or a SOX-F family inhibitor, MCC177, significantly inhibited adhesion of an trophectodermal spheroids to the epithelial cells thereby preventing 'implantation'. These data confirm the important role of endometrial SOX17 in human endometrial receptivity and embryo implantation.


Assuntos
Implantação do Embrião/fisiologia , Endométrio/fisiologia , Fatores de Transcrição SOXF/fisiologia , Estrogênios/fisiologia , Feminino , Técnicas de Silenciamento de Genes , Humanos , Gravidez , Progesterona/fisiologia , Fatores de Transcrição SOXF/genética
18.
Proteomics ; 19(23): e1800423, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31531940

RESUMO

Embryo implantation into maternal endometrium is critical for initiation and establishment of pregnancy, requiring developmental synchrony between endometrium and blastocyst. However, factors regulating human endometrial-embryo cross talk and facilitate implantation remain largely unknown. Extracellular vesicles (EVs) are emerging as important mediators of this process. Here, a trophectoderm spheroid-based in vitro model mimicking the pre-implantation human embryo is used to recapitulate important functional aspects of blastocyst implantation. Functionally, human endometrial EVs, derived from hormonally treated cells synchronous with implantation, are readily internalized by trophectoderm cells, regulating adhesive and invasive capacity of human trophectoderm spheroids. To gain molecular insights into mechanisms underpinning endometrial EV-mediated enhancement of implantation, quantitative proteomics reveal critical alterations in trophectoderm cellular adhesion networks (cell adhesion molecule binding, cell-cell adhesion mediator activity, and cell adherens junctions) and metabolic and gene expression networks, and the soluble secretome from human trophectodermal spheroids. Importantly, transfer of endometrial EV cargo proteins to trophectoderm to mediate changes in trophectoderm function is demonstrated. This is highlighted by correlation among endometrial EVs, the trophectodermal proteome following EV uptake, and EV-mediated trophectodermal cellular proteome, important for implantation. This work provides an understanding into molecular mechanisms of endometrial EV-mediated regulation of human trophectoderm functions-fundamental in understanding human endometrium-embryo signaling during implantation.


Assuntos
Implantação do Embrião/fisiologia , Embrião de Mamíferos/metabolismo , Endométrio/metabolismo , Vesículas Extracelulares/metabolismo , Western Blotting , Adesão Celular/fisiologia , Microscopia Crioeletrônica , Células Epiteliais/metabolismo , Feminino , Humanos , Microscopia Eletrônica de Transmissão , Proteoma/metabolismo
19.
FASEB J ; 33(1): 584-605, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30036086

RESUMO

Repair after damage is essential for tissue homeostasis. Postmenstrual endometrial repair is a cyclical manifestation of rapid, scar-free, tissue repair taking ∼3-5 d. Skin repair after wounding is slower (∼2 wk). In the case of chronic wounds, it takes months to years to restore integrity. Herein, the unique "rapid-repair" endometrial environment is translated to the "slower repair" skin environment. Menstrual fluid (MF), the milieu of postmenstrual endometrial repair, facilitates healing of endometrial and keratinocyte "wounds" in vitro, promoting cellular adhesion and migration, stimulates keratinocyte migration in an ex vivo human skin reconstruct model, and promotes re-epithelialization in an in vivo porcine wound model. Proteomic analysis of MF identified a large number of proteins: migration inhibitory factor, neutrophil gelatinase-associated lipocalin, follistatin like-1, chemokine ligand-20, and secretory leukocyte protease inhibitor were selected for further investigation. Functionally, they promote repair of endometrial and keratinocyte wounds by promoting migration. Translation of these and other MF factors into a migration-inducing treatment paradigm could provide novel treatments for tissue repair.-Evans, J., Infusini, G., McGovern, J., Cuttle, L., Webb, A., Nebl, T., Milla, L., Kimble, R., Kempf, M., Andrews, C. J., Leavesley, D., Salamonsen, L. A. Menstrual fluid factors facilitate tissue repair: identification and functional action in endometrial and skin repair.


Assuntos
Endométrio/citologia , Queratinócitos/citologia , Menstruação/metabolismo , Proteoma/metabolismo , Pele/citologia , Cicatrização , Animais , Adesão Celular , Movimento Celular , Proliferação de Células , Endométrio/metabolismo , Feminino , Humanos , Queratinócitos/metabolismo , Proteômica , Pele/metabolismo , Suínos
20.
Reproduction ; 158(6): F55-F67, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-30521482

RESUMO

The focus of my life in science has been to improve reproductive health for women, with an emphasis on the endometrium, the most dynamic tissue in the human body: its remarkable cyclical remodelling is essential for the establishment of pregnancy. The most notable events in a woman's endometrial cycle are menstruation and endometrial repair, regeneration of the endometrium during the proliferative phase, attainment of receptivity by the mid-secretory phase of the cycle and the embryo-maternal interactions that initiate peri-implantation events within the microenvironment of the uterine cavity. I have contributed to understanding the molecular and cellular changes underpinning these events, and how disturbance of them leads to menstrual disorders, infertility and endometrial diseases including abnormal uterine bleeding, endometriosis and endometrial cancer. My team has contributed to changes in clinical IVF practice, to a new diagnostic for endometrial receptivity in infertile women and to enhancing endometrial repair. I have shared my world with many amazing younger scientists: it has indeed been a privileged journey.


Assuntos
Microambiente Celular , Implantação do Embrião , Embrião de Mamíferos/fisiologia , Endométrio/fisiologia , Fertilização in vitro , Infertilidade Feminina/prevenção & controle , Reprodução , Comunicação Celular , Embrião de Mamíferos/citologia , Feminino , Humanos , Ciclo Menstrual , Gravidez , Saúde da Mulher
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...