Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Insect Sci ; 23(3)2023 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-37220089

RESUMO

Mexican fruit fly (Anastrepha ludens (Loew)) (Diptera: Tephritidae) represents a major threat to fruit production in the Western Hemisphere. Sterile insect technique is used to suppress and eradicate wild populations. Success of this control method necessitates weekly production of hundreds of millions of flies, their sterilization by irradiation, and their aerial release. Diet needed to produce large fly numbers are conducive to the spread of bacteria. Pathogenic bacteria were isolated from 3 rearing facilities and from multiple sources: eggs, larvae, pupae and spent diet, and were found to include some isolates identified to the genus Providencia (Enterobacteriales: Morganellaceae). We identified 41 Providencia isolates and tested their pathogenicity to A. ludens. Based on 16s rRNA sequences, 3 groups were clustered into several species of Providencia with varying capacities to affect the Mexican fruit fly production. Isolates putatively identified as P. alcalifaciens/P. rustigianii were all pathogenic causing larval and pupal yield reduction of 46-64% and 37-57%, respectively. Among them, Providencia isolate 3006 was the most pathogenic reducing larval and pupae yield by 73 and 81%, respectively. Isolates identified as P. sneebia were not pathogenic. The final cluster, P. rettgeri/P. vermicola, were variable in pathogenicity with 3 isolates yielding like the control and the rest causing larval and pupal yield reduction of 26-53% and 23-51%, respectively. Isolates putatively identified as P. alcalifaciens/P. rustigianii were more virulent than P. rettgeri/P. vermicola. Accurate identification of species is needed to diagnose and monitor pathogenic versus nonpathogenic Providencia strains.


Assuntos
Tephritidae , Animais , Providencia , Virulência , RNA Ribossômico 16S , Óvulo , Larva , Pupa
2.
J Econ Entomol ; 111(5): 2081-2088, 2018 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-30053163

RESUMO

Yeasts from all immature life stages of Mexican fruit fly Anastrepha ludens (Loew) (Diptera: Tephritidae) from diet, insectary air, and rearing materials were isolated, identified and evaluated for pathogenicity. Fifteen species of yeasts with one to genus level were identified from 72 yeast cultures obtained. Zygosaccharomyces bailii was the only yeast found to be highly pathogenic to Mexican fruit fly. Seventy-two hours post inoculation, the diet in bioassay cups with Z. bailii consistently showed signs of fermentation with gas bubbling causing the migration of larvae to the walls and lids of bioassay cups. The spent diet from Z. balii-infested cups was crusty, cracked and had a pasty layer. Many larvae were small, moribund, and discolored, appearing caramel or blackish. Insect yield loss with Z. bailii in comparison to that of control ranged from 10 to 44% for larvae and 14 to 47% for pupae. Additionally, Z. bailii caused a reduction in mean pupal weight. The weakly pathogenic yeasts produced significantly less yield of larvae and pupae than the nonpathogenic ones included Trichosporon montevideense, Clavispora lucitaniae, Candida sp., C. rugosa, and Rhodotorula mucilaginosa. Yield loss of larvae caused by this group ranged from 12 (C. lusitaniae) to 18% (R. mucilaginosa). Yield losses for pupa were similar to that of larvae. The mean pupa weight for these species was above the minimum acceptable (16.50 mg) for the SIT program. The nonpathogenic yeast produced yields of larvae and pupae similar to the control included Cryptococcus diffluens, Pichia kudriavzevii, Meyerozyma guilliermondii, Wickerhamomyces anomalus, Trichosporon asahii, Debaryomyces hansenii, Candida tropicalis, Cryptococcus sp., Candida parapsilosis, and Hanseniaspora opuntiae. In conclusion, the identification and management of insect pathogenic yeasts, such as Z. balii in mass rearing systems of Mexican fruit fly must be considered to avoid their potential negative effects.


Assuntos
Interações Hospedeiro-Patógeno , Tephritidae/microbiologia , Zygosaccharomyces/patogenicidade , Animais , Tephritidae/crescimento & desenvolvimento , Zygosaccharomyces/fisiologia
3.
Phytopathology ; 101(6): 687-95, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21244225

RESUMO

Gibberella zeae, the principal cause of Fusarium head blight (FHB) of barley, contaminates grains with several mycotoxins, which creates a serious problem for the malting barley industry in the United States, China, and Europe. However, limited studies have been conducted on the trichothecene profiles and population genetic structure of G. zeae isolates collected from barley in the United States. Trichothecene biosynthesis gene (TRI)-based polymerase chain reaction (PCR) assays and 10 variable number tandem repeat (VNTR) markers were used to determine the genetic diversity and compare the trichothecene profiles of an older population (n = 115 isolates) of G. zeae collected in 1997 to 2000 with a newer population (n = 147 isolates) collected in 2008. Samples were from across the major barley-growing regions in North Dakota and Minnesota. The results of TRI-based PCR assays were further validated using a subset of 32 and 28 isolates of G. zeae by sequence analysis and gas chromatography, respectively. TRI-based PCR assays revealed that all the G. zeae isolates in both populations had markers for deoxynivalenol (DON), and the frequencies of isolates with a 3-acetyldeoxynivalenol (3-ADON) marker in the newer population were ≈11-fold higher than those among isolates in the older population. G. zeae populations from barley in the Midwest of the United States showed no spatial structure, and all the isolates were solidly in clade 7 of G. zeae, which is quite different from other barley-growing areas of world, where multiple species of G. zeae are commonly found in close proximity and display spatial structure. VNTR analysis showed high gene diversity (H = 0.82 to 0.83) and genotypic diversity but low linkage disequilibrium (LD = 0.02 to 0.07) in both populations. Low genetic differentiation (F(ST) = 0.013) and high gene flow (Nm = 36.84) was observed between the two populations and among subpopulations within the same population (Nm = 12.77 to 29.97), suggesting that temporal and spatial variations had little influence on population differentiation in the Upper Midwest. Similarly, low F(ST) (0.02) was observed between 3-ADON and 15-acetyldeoxynivalenol populations, indicating minor influence of the chemotype of G. zeae isolates on population subdivision, although there was a rapid increase in the frequencies of isolates with the 3-ADON marker in the Upper Midwest between the older collection made in 1997 to 2000 and the newer collection made in 2008. This study provides information to barley-breeding programs for their selection of isolates of G. zeae for evaluating barley genotypes for resistance to FHB and DON accumulation.


Assuntos
Genética Populacional , Gibberella/química , Gibberella/genética , Hordeum/microbiologia , Doenças das Plantas/microbiologia , Tricotecenos/análise , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Fluxo Gênico/genética , Marcadores Genéticos/genética , Variação Genética/genética , Genética Populacional/estatística & dados numéricos , Genótipo , Gibberella/classificação , Gibberella/patogenicidade , Desequilíbrio de Ligação/genética , Repetições Minissatélites/genética , Minnesota , North Dakota , Proteínas de Transporte de Fosfato/química , Proteínas de Transporte de Fosfato/genética , Doenças das Plantas/estatística & dados numéricos , Reação em Cadeia da Polimerase/métodos , Tricotecenos/genética
4.
Plant Dis ; 88(3): 301-307, 2004 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30812364

RESUMO

Data supplementing a previously published survey of North American isolates of Phytophthora erythroseptica and Pythium ultimum demonstrated that the proportion of the populations sensitive to mefenoxam remains high, 79.6 and 96.9% with EC50 sensitivities ranging from <0.01 to 0.9 µg ml-1 and <0.01 to 0.8 µg ml-1, respectively. Mefenoxam should provide control of these pathogens in most potato production areas. Factors affecting the development of pink rot and leak in potato tubers and the efficacy of mefenoxam to control these diseases with different etiologies were examined. Results confirmed that P. erythroseptica is capable of directly infecting potato tubers causing pink rot, whereas Pythium ultimum requires a wound to infect and cause leak. Mefenoxam was applied to replicated field plots as a single in-furrow application at planting, as an in-furrow application at planting followed by an additional sidedress application 3 weeks after planting, as a single foliar application when tubers were 7 to 8 mm in diameter, and as two foliar applications when the tubers were 7 to 8 mm in diameter and 14 days later. The recommended label rate plus two additional lower application rates were used with each method. For tubers challenge-inoculated after harvest, mefenoxam was found to be more effective in controlling pink rot relative to leak over all application methods. The greatest level of pink rot control (89%) was attained with the in-furrow at planting and sidedress application. All rates tested provided similar levels of control with this application method, but this method provided only a modest level of leak control (35%), and leak was not controlled by foliar applications of mefenoxam at any rate tested. In contrast, the foliar applications of mefenoxam resulted in 10 to 50% control of pink rot. Since the isolates of both pathogens were highly sensitive to me-fenoxam, disease-specific control was attributed to differences in disease etiology. Therefore, the use of mefenoxam to control pink rot in the field and storage appears to be well founded.

5.
Plant Dis ; 87(1): 91-97, 2003 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30812707

RESUMO

Tubers of 34 potato cultivars were examined for their susceptibility to infection by zoospores of Phytophthora erythroseptica and mycelia of Pythium ultimum. Incidence of infected tubers (%) and penetration of rot (mm) were the parameters used to determine the susceptibility of each cultivar. Tubers of cv. Atlantic appeared to have some resistance to infection and colonization by Phytophthora erythroseptica. Cvs. Russet Norkotah and Snowden were the most susceptible to infection by P. erythroseptica. Snowden was found to be highly susceptible to P. erythroseptica, but it was the most resistant to Pythium ultimum. Cvs. FL-1625 and FL-1867 also were less susceptible to P. ultimum than the other cultivars. Cvs. Superior, Itasca, and Dark Red Norland were the most susceptible to P. ultimum. Cultivar susceptibility should be considered when making disease management decisions, particularly in fields where these soilborne diseases are a recurring problem.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...