Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Org Lett ; 26(21): 4542-4547, 2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38775727

RESUMO

Herein, we describe the formation of an electron donor-acceptor (EDA) complex between electron-rich cycloalkanols and electron-deficient alkenes that triggers the proton-coupled electron transfer ring opening of strained and unstrained cycloalkanols without the need for an external photocatalyst. This activation generates a remote alkyl radical that undergoes a Giese reaction with the Michael acceptor in an efficient manner. Mechanistic investigations corroborate both the formation of the EDA complex and the consecutive Giese reaction.

2.
Org Lett ; 24(17): 3123-3127, 2022 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-35362991

RESUMO

Herein, we report the enantioselective addition of remote alkyl radicals, generated from the ring opening of unstrained cycloalkanols by a proton-coupled electron transfer (PCET) process, to 2-acyl imidazoles previously coordinated to a rhodium-based chiral Lewis acid. High yields and enantioselectivites up to 99% are achieved in 1 h. Mechanistic investigations support the formation of the remote alkyl radical by a PCET process, and theoretical studies explain the observed stereochemistry in the addition step.

3.
J Am Chem Soc ; 144(12): 5284-5294, 2022 03 30.
Artigo em Inglês | MEDLINE | ID: mdl-35293206

RESUMO

Antibody-drug conjugates (ADCs) are a class of targeted therapeutics used to selectively kill cancer cells. It is important that they remain intact in the bloodstream and release their payload in the target cancer cell for maximum efficacy and minimum toxicity. The development of effective ADCs requires the study of factors that can alter the stability of these therapeutics at the atomic level. Here, we present a general strategy that combines synthesis, bioconjugation, linker technology, site-directed mutagenesis, and modeling to investigate the influence of the site and microenvironment of the trastuzumab antibody on the stability of the conjugation and linkers. Trastuzumab is widely used to produce targeted ADCs because it can target with high specificity a receptor that is overexpressed in certain breast cancer cells (HER2). We show that the chemical environment of the conjugation site of trastuzumab plays a key role in the stability of linkers featuring acid-sensitive groups such as acetals. More specifically, Lys-207, located near the reactive Cys-205 of a thiomab variant of the antibody, may act as an acid catalyst and promote the hydrolysis of acetals. Mutation of Lys-207 into an alanine or using a longer linker that separates this residue from the acetal group stabilizes the conjugates. Analogously, Lys-207 promotes the beneficial hydrolysis of the succinimide ring when maleimide reagents are used for conjugation, thus stabilizing the subsequent ADCs by impairing the undesired retro-Michael reactions. This work provides new insights for the design of novel ADCs with improved stability properties.


Assuntos
Antineoplásicos , Imunoconjugados , Acetais , Antineoplásicos/química , Antineoplásicos/farmacologia , Imunoconjugados/química , Maleimidas/química , Mutação , Compostos de Sulfidrila/química , Trastuzumab/química
4.
Commun Chem ; 3(1): 132, 2020 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-36703325

RESUMO

The broad presence of azaarene moieties in natural products has promoted the development of new functionalization reactions, giving access to larger libraries of bioactive compounds. The light promoted [2 + 2] photocycloaddition reaction to generate cyclobutanes has been extensively studied in photochemistry. In particular, De Mayo reported the [2 + 2] cycloaddition followed by retroaldol condensation between enols of 1,3-dicarbonyls and double bonds to synthesize 1,5-dicarbonyls. Herein, we describe the [2 + 2] photocycloaddition followed by a ring-opening rearomatization reaction between electron-deficient 2-methylene-azaarenes and double bonds, taking advantage of the ability of these heterocyclic derivatives to form the corresponding pseudo-enamine intermediate. The procedure shows a high functional group tolerance either on the double bond or the heteroarene side and allows the presence of different electron-withdrawing groups. In addition, the wide applicability of this reaction has been demonstrated through the late-stage derivatization of several natural products. Photochemical studies, together with theoretical calculations, support a mechanism involving the photosensitization of the pseudo-enamine intermediate.

5.
Org Lett ; 21(13): 5295-5300, 2019 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-31247804

RESUMO

Aryl radical generation and manipulation constitutes a long-standing challenge in organic synthesis. Photocatalytic single-electron reduction of aryl halides has been established as a premier activation pathway to reach these intermediates. The current study integrates the conceptual simplicity of the classical intramolecular homolytic substitution with the practicality of the modern photocatalytic approach. Predicated on an efficient metal-free dehalogenation of aryl halides under mild organo-photoredox conditions, sulfur, phosphorus, and silicon heteroatoms capture the C(sp2)-centered radical in an intramolecular fashion.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA