Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros










Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Fluids Barriers CNS ; 21(1): 27, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38491505

RESUMO

BACKGROUND: A principal protective component of the mammalian blood-brain barrier (BBB) is the high expression of the multidrug efflux transporters P-glycoprotein (P-gp, encoded by ABCB1) and ABCG2 (encoded by ABCG2) on the lumenal surface of endothelial cells. The zebrafish P-gp homolog Abcb4 is expressed at the BBB and phenocopies human P-gp. Comparatively little is known about the four zebrafish homologs of the human ABCG2 gene: abcg2a, abcg2b, abcg2c, and abcg2d. Here we report the functional characterization and brain tissue distribution of zebrafish ABCG2 homologs. METHODS: To determine substrates of the transporters, we stably expressed each in HEK-293 cells and performed cytotoxicity and fluorescent efflux assays with known ABCG2 substrates. To assess the expression of transporter homologs, we used a combination of RNAscope in situ hybridization probes and immunohistochemistry to stain paraffin-embedded sections of adult and larval zebrafish. RESULTS: We found Abcg2a had the greatest substrate overlap with ABCG2, and Abcg2d appeared to be the least functionally similar. We identified abcg2a as the only homolog expressed at the adult and larval zebrafish BBB, based on its localization to claudin-5 positive brain vasculature. CONCLUSIONS: These results demonstrate the conserved function of zebrafish Abcg2a and suggest that zebrafish may be an appropriate model organism for studying the role of ABCG2 at the BBB.


Assuntos
Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP , Barreira Hematoencefálica , Peixe-Zebra , Adulto , Animais , Humanos , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/genética , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/metabolismo , Barreira Hematoencefálica/metabolismo , Células Endoteliais/metabolismo , Células HEK293 , Mamíferos/metabolismo , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Peixe-Zebra/metabolismo
2.
bioRxiv ; 2024 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-37425689

RESUMO

Background: A principal protective component of the mammalian blood-brain barrier (BBB) is the high expression of the multidrug efflux transporters P-glycoprotein (P-gp, encoded by ABCB1) and ABCG2 (encoded by ABCG2) on the lumenal surface of endothelial cells. The zebrafish P-gp homolog Abcb4 is expressed at the BBB and phenocopies human P-gp. Comparatively little is known about the four zebrafish homologs of the human ABCG2 gene: abcg2a, abcg2b, abcg2c, and abcg2d. Here we report the functional characterization and brain tissue distribution of zebrafish ABCG2 homologs. Methods: To determine substrates of the transporters, we stably expressed each in HEK-293 cells and performed cytotoxicity and fluorescent efflux assays with known ABCG2 substrates. To assess the expression of transporter homologs, we used a combination of RNAscope in situ hybridization probes and immunohistochemistry to stain paraffin-embedded sections of adult and larval zebrafish. Results: We found Abcg2a had the greatest substrate overlap with ABCG2, and Abcg2d appeared to be the least functionally similar. We identified abcg2a as the only homolog expressed at the adult and larval zebrafish BBB, based on its localization to claudin-5 positive brain vasculature. Conclusions: These results demonstrate the conserved function of zebrafish Abcg2a and suggest that zebrafish may be an appropriate model organism for the studying the role of ABCG2 at the BBB.

3.
J Biol Chem ; 300(2): 105594, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38145744

RESUMO

ABCB5 is a member of the ABC transporter superfamily composed of 48 transporters, which have been extensively studied for their role in cancer multidrug resistance and, more recently, in tumorigenesis. ABCB5 has been identified as a marker of skin progenitor cells, melanoma, and limbal stem cells. It has also been associated with multidrug resistance in several cancers. The unique feature of ABCB5 is that it exists as both a full transporter (ABCB5FL) and a half transporter (ABCB5ß). Several studies have shown that the ABCB5ß homodimer does not confer multidrug resistance, in contrast to ABCB5FL. In this study, using three complementary techniques, (1) nanoluciferase-based bioluminescence resonance energy transfer, (2) coimmunoprecipitation, and (3) proximity ligation assay, we identified two novel heterodimers in melanoma: ABCB5ß/B6 and ABCB5ß/B9. Both heterodimers could be expressed in High-Five insect cells and ATPase assays revealed that both functional nucleotide-binding domains of homodimers and heterodimers are required for their basal ATPase activity. These results are an important step toward elucidating the functional role of ABCB5ß in melanocytes and melanoma.


Assuntos
Subfamília B de Transportador de Cassetes de Ligação de ATP , Melanoma , Humanos , Adenosina Trifosfatases/metabolismo , Subfamília B de Transportador de Cassetes de Ligação de ATP/genética , Subfamília B de Transportador de Cassetes de Ligação de ATP/isolamento & purificação , Subfamília B de Transportador de Cassetes de Ligação de ATP/metabolismo , Melanoma/genética , Melanoma/fisiopatologia , Células HEK293
4.
Cancer Drug Resist ; 6(6): 468-480, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37840856

RESUMO

Aim: Ferroptosis is a non-apoptotic form of cell death caused by lethal lipid peroxidation. Several small molecule ferroptosis inducers (FINs) have been reported, yet little information is available regarding their interaction with the ATP-binding cassette (ABC) transporters P-glycoprotein (P-gp, ABCB1) and ABCG2. We thus sought to characterize the interactions of FINs with P-gp and ABCG2, which may provide information regarding oral bioavailability and brain penetration and predict drug-drug interactions. Methods: Cytotoxicity assays with ferroptosis-sensitive A673 cells transfected to express P-gp or ABCG2 were used to determine the ability of the transporters to confer resistance to FINs; confirmatory studies were performed in OVCAR8 and NCI/ADR-RES cells. The ability of FINs to inhibit P-gp or ABCG2 was determined using the fluorescent substrates rhodamine 123 or purpuin-18, respectively. Results: P-gp overexpression conferred resistance to FIN56 and the erastin derivatives imidazole ketone erastin and piperazine erastin. P-gp-mediated resistance to imidazole ketone erastin and piperazine erastin was also reversed in UO-31 renal cancer cells by CRISPR-mediated knockout of ABCB1. The FINs ML-162, GPX inhibitor 26a, and PACMA31 at 10 µM were able to increase intracellular rhodamine 123 fluorescence over 10-fold in P-gp-expressing MDR-19 cells. GPX inhibitor 26a was able to increase intracellular purpurin-18 fluorescence over 4-fold in ABCG2-expressing R-5 cells. Conclusion: Expression of P-gp may reduce the efficacy of these FINs in cancers that express the transporter and may prevent access to sanctuary sites such as the brain. The ability of some FINs to inhibit P-gp and ABCG2 suggests potential drug-drug interactions.

5.
Environ Sci Pollut Res Int ; 30(43): 97377-97385, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37592068

RESUMO

Vineyard-derived pomace is a byproduct of the wine industry that can have a negative impact on the environment if it is only disposed of or used as a fertilizer. Owing to its polyphenol content, grape pomace is an alternative to biocontrol undesirable microorganisms. In the present study, we characterized the phenolic composition of red and white grape pomace from Valles Calchaquíes, Argentina, and explored its activity against Leishmania (Leishmania) amazonensis, an etiological agent of American tegumentary leishmaniasis, a neglected endemic disease in northern Argentina. Red and white pomace extracts similarly reduced Leishmania viability after a 48-h treatment, with the fractions containing a higher proportion of phenolic compounds being more active. Both extracts stimulated ATPase activity on the parasite plasma membranes, with white grape pomace having a stronger effect than red grape pomace. In addition, the extracts displayed fairly good anticholinesterase activity, which may have contributed to their anti-Leishmania activity. These results reinforce the potential applicability of grape pomace as an antimicrobial agent for the development of biopesticides.


Assuntos
Leishmania , Leishmaniose Cutânea , Humanos , Argentina , Fazendas , Fenóis , Extratos Vegetais
6.
bioRxiv ; 2023 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-36945397

RESUMO

Ferroptosis is a form of cell death caused by direct or indirect inhibition of glutathione peroxidase 4 that leads to lethal lipid peroxidation. Several small molecule ferroptosis inducers (FINs) have been reported, yet little information is available regarding resistance mechanisms, particularly their interaction with the ATP-binding cassette (ABC) transporters P-glycoprotein (P-gp, ABCB1) and ABCG2. Given the role that ABC transporters play in absorption, distribution, and excretion of many drugs, characterizing these interactions could provide information regarding oral bioavailability and brain penetration and may predict drug-drug interactions. Using ferroptosis-sensitive A673 cells transfected to express P-gp or ABCG2, we found that P-gp overexpression was able to confer resistance to FIN56 and the erastin derivatives imidazole ketone erastin and piperazine erastin. Results were confirmed with OVCAR8-derived NCI/ADR-RES cells that overexpress P-gp, where the P-gp inhibitor valspodar completely inhibited resistance to the FINs. P-gp-mediated resistance to imidazole ketone erastin and piperazine erastin was also reversed in UO-31 renal cancer cells by CRISPR-mediated knockout of ABCB1. At a concentration of 10 µM, the FINs ML-162, GPX inhibitor 26a, and PACMA31 were able to increase intracellular rhodamine 123 fluorescence over 10-fold in P-gp-expressing MDR-19 cells and GPX inhibitor 26a was able to increase intracellular purpurin-18 fluorescence over 4-fold in ABCG2-expressing R-5 cells. Expression of P-gp may reduce the efficacy of these FINs in cancers that express the transporter and may prevent access to sanctuary sites such as the brain. The ability of some FINs to inhibit P-gp and ABCG2 suggests potential drug-drug interactions.

7.
Inorg Chem ; 61(17): 6604-6611, 2022 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-35446572

RESUMO

Metal-organic cages are a class of supramolecular structures that often require the careful selection of organic linkers and metal nodes. Of this class, few examples of metal-organic cages exist where the nodes are composed of main group metals. Herein, we have prepared an aluminum-based metal-organic cage, H8[Al8(pdc)8(OAc)8O4] (Al-pdc-AA), using inexpensive and commercially available materials. The cage formation was achieved via solvothermal self-assembly of solvated aluminum and pyridine-dicarboxylic linkers in the presence of a capping agent, acetic acid. The obtained supramolecular structure was characterized by single-crystal X-ray diffraction (SCXRD), thermogravimetric analysis, and NMR spectroscopy. Based on crystal structure and computational analyses, the cage has a 3.7 Å diameter electron-rich cavity suitable for the binding of cations such as cesium (ionic radius of 1.69 Å). The host-guest interactions were probed with 1H and 133Cs NMR spectroscopy in DMSO, where at low concentrations, Cs+ binds to Al-pdc-AA in a 1:1 ratio. The binding site was identified from the crystal structure of CsH7[Al8(pdc)8(OAc)8O4] (Cs+⊂Al-pdc-AA), and a binding affinity of ∼106-107 M-1 was determined from NMR titration experiments. The Al-pdc-AA showed improved selectivity for cesium binding over alkali metal cations (Cs+ > Rb+ > K+ ≫ Na+ ∼ Li+). Collectively, the study reports a novel aluminum cage that can serve as a promising host for efficient and selective cesium removal.

8.
Front Cell Neurosci ; 15: 580717, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33708072

RESUMO

Herpes simplex virus type 1 (HSV-1) is a widespread neurotropic virus. Primary infection of HSV-1 in facial epithelium leads to retrograde axonal transport to the central nervous system (CNS) where it establishes latency. Under stressful conditions, the virus reactivates, and new progeny are transported anterogradely to the primary site of infection. During the late stages of neuronal infection, axonal damage can occur, however, the impact of HSV-1 infection on the morphology and functional integrity of neuronal dendrites during the early stages of infection is unknown. We previously demonstrated that acute HSV-1 infection in neuronal cell lines selectively enhances Arc protein expression - a major regulator of long-term synaptic plasticity and memory consolidation, known for being a protein-interaction hub in the postsynaptic dendritic compartment. Thus, HSV-1 induced Arc expression may alter the functionality of infected neurons and negatively impact dendritic spine dynamics. In this study we demonstrated that HSV-1 infection induces structural disassembly and functional deregulation in cultured cortical neurons, an altered glutamate response, Arc accumulation within the somata, and decreased expression of spine scaffolding-like proteins such as PSD-95, Drebrin and CaMKIIß. However, whether these alterations are specific to the HSV-1 infection mechanism or reflect a secondary neurodegenerative process remains to be determined.

9.
J Neuropathol Exp Neurol ; 79(6): 626-640, 2020 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-32417932

RESUMO

Choroid plexus (CP) may aid brain development and repair by secreting growth factors and neurotrophins for CSF streaming to ventricular and subventricular zones. Disrupted ventricular/subventricular zone progenitors and stem cells lead to CNS maldevelopment. Exploring models, we organ cultured the CP and transplanted fresh CP into a lateral ventricle of postnatal hydrocephalic (hyHTx) and nonhydrocephalic (nHTx) rats. After 60 days in vitro, the cultured choroid ependyma formed spherical rings with beating cilia. Cultured CP expressed endocytotic caveolin 1 and apical aquaporin 1 and absorbed horseradish peroxidase from medium. Transthyretin secretory protein was secreted by organ-cultured CP into medium throughout 60 days in vitro. Fresh CP, surviving at 1 week after lateral ventricle implantation of nHTx or hyHTx did not block CSF flow. Avascular 1-week transplants in vivo expressed caveolin 1, aquaporin 1, and transthyretin, indicating that grafted CP may secrete trophic proteins but not CSF. Our findings encourage further exploration on CP organ culture and grafting for translational strategies. Because transplanted CP, though not producing CSF, may secrete beneficial molecules for developing brain injured by hydrocephalus, we propose that upon CP removal in hydrocephalus surgery, the fractionated tissue could be transplanted back (ventricular autograft).


Assuntos
Plexo Corióideo , Hidrocefalia/cirurgia , Ventrículos Laterais/cirurgia , Enxerto Vascular/métodos , Animais , Modelos Animais de Doenças , Técnicas de Cultura de Órgãos , Ratos , Resultado do Tratamento
10.
J Am Chem Soc ; 141(30): 11947-11953, 2019 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-31271285

RESUMO

The chronoamperometric response (I vs t) of three metallocene-doped metal-organic frameworks (MOFs) thin films (M-NU-1000, M = Fe, Ru, Os) in two different electrolytes (tetrabutylammonium hexafluorophosphate [TBAPF6] and tetrabutylammonium tetrakis(pentafluorophenyl)borate [TBATFAB]) was utilized to elucidate the diffusion coefficients of electrons and ions (De and Di, respectively) through the structure in response to an oxidizing applied bias. The application of a theoretical model for solid state voltammetry to the experimental data revealed that the diffusion of ions is the rate-determining step at the three different time stages of the electrochemical transformation: an initial stage characterized by rapid electron diffusion along the crystal-solution boundary (stage A), a second stage that represents the diffusion of electrons and ions into the bulk of the MOF crystallite (stage B), and a final period of the conversion dominated only by the diffusion of ions (stage C). Remarkably, electron diffusion (De) increased in the order of Fe < Ru < Os using PF61- as the counteranion in all the stages of the voltammogram, demonstrating the strategy to modulate the rate of electron transport through the incorporation of rapidly self-exchanging molecular moieties into the MOF structure. The De values obtained with larger TFAB1- counteranion were generally in agreement with the previous trend but were on average lower than those obtained with PF61-. Similarly, the ion diffusion coefficient (Di) was generally higher for TFAB1- than for PF61- as the ions diffuse into the crystal bulk, due to the high degree of ion-pair association between PF61- and the metallocenium ion, resulting in a faster penetration of the weakly associated TFAB1- anion through the MOF pores. These structure-function relationships provide a foundation for the future design, control, and optimization of electron and ion transport properties in MOF thin films.

11.
Front Microbiol ; 10: 2992, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31998273

RESUMO

In South America Andes hantavirus (ANDV) is hosted by the rodent Oligoryzomys longicaudatus (also known as pygmy rice rat). In humans, ANDV causes Hantavirus Pulmonary Syndrome (HPS), with a fatality rate of about 40%. Epidemiologic and molecular evidence has shown that ANDV can be transmitted from person to person. Sin Nombre hantavirus, occurring in North America, and ANDV are genetically related, and both cause HPS with similar clinical evolution and mortality rate. However, only ANDV is transmitted from person to person. A recent hantavirus outbreak in a small village in Southern Argentine, with 29 HPS cases and 11 deaths has brought to mind that person-to-person transmission continues to be a public health emergency. The present investigation was aimed to understand how does ANDV actually spread between persons. Tissue samples of lung and salivary glands from infected Oligoryzomys longicaudatus and lethal cases of human HPS were investigated by bright field immunocytochemistry, multichannel immunofluorescence, and transmission electron microscopy. The findings are consistent with ANDV infection and replication in the lung alveolar epithelium and macrophages, and in the secretory cells of the submandibular salivary glands. In the lung of infected Oligoryzomys longicaudatus and human cases HPS, the bulk of immunoreactive hantavirus antigens was localized in epithelial cells of the alveolar walls and macrophages. The ultrastructural study supports that in the lung of HPS patients the virus replicates in the alveolar epithelial cells with virus particles being discharged into the alveolar lumen. Virus-like particles were seen within vacuoles of the lung macrophages. Considering that these macrophages can reach the conductive segments of the airways, their expectoration becomes a deadly bullet for ANDV transmission. In the submandibular glands of infected rodents and HPS cases, ANDV antigens were in capillary endothelium, the secretory cells and filling the lumen of the excretory pathway. It is proposed that in patients with HPS caused by ANDV the alveolar epithelium and macrophages would be the gate for the airway spreading of the virus, while the salivary glands are a target for virus replication and an exit pathway through saliva.

12.
Biochim Biophys Acta Biomembr ; 1861(1): 170-177, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30463700

RESUMO

In the present work, we analyzed how external factors can modulate the efficiency of epigallocatechin­3­O­gallate (EGCG) inhibition of a membrane-bound isoform of the acetylcholinesterase. Increasing the ionic strength but not the osmolarity of the bulk medium proved to be an important factor. In addition, we verified a clear correlation between the inhibitory activity with the order degree of the membranes by using cholesterol-partially depleted red blood cell ghosts. These two factors i.e. high salt concentration in the bulk medium and less viscous membranes, allow a deeper insertion of the EGCG into the lipid bilayer, thus leading to a greater inhibition of AChE. As a corollary, we propose that any treatment or process that leads to a slight decrease in cholesterol content in the membranes can efficiently enhance the inhibitory activity of EGCG, which can have important consequences in all the pathologies where the inhibition of AChE is recommended.


Assuntos
Acetilcolinesterase/metabolismo , Catequina/análogos & derivados , Inibidores da Colinesterase/química , Membrana Eritrocítica/metabolismo , Bicamadas Lipídicas/química , Concentração Osmolar , Catequina/química , Colesterol/química , Humanos , Íons , Cinética , Sais/química , Solubilidade , Espectrometria de Fluorescência , Espectroscopia de Infravermelho com Transformada de Fourier
13.
J Membr Biol ; 251(4): 593-600, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29728709

RESUMO

The interaction of enterodiol and the well-described polyphenol epigallocatechin gallate (EGCG) with hepatic membranes has been matter of interest in the last few years. On one hand, EGCG is only able to bind to the phospholipid polar head groups, as it has been already described in synthetic lipid bilayers and erythrocyte membranes but cannot get inserted into the hydrophobic core or be transported into the lumen of membrane vesicles. On the other, enterodiol has no interaction with non-energized membranes either, but it is able to interact and even be transported upon addition of ATP. In fact, the ATPase activity undergoes a twofold increase in the presence of enterodiol but not in the presence of EGCG. This is the first report on the transport of enterodiol by liver membranes, and it may help explain the rather high blood concentrations of this estrogenic enterolignan compared to EGCG, which is extensively metabolized by the intestine and the liver. The present results suggest that a fraction of enterodiol may escape the liver inactivation by being pumped out from the hepatocytes to the bloodstream.


Assuntos
Adenosina Trifosfatases/química , Adenosina Trifosfatases/metabolismo , Membrana Celular/metabolismo , Lignanas/metabolismo , Bicamadas Lipídicas/química , Fígado/metabolismo , Polifenóis/química , Polifenóis/metabolismo , Animais , Catequina/análogos & derivados , Catequina/química , Catequina/metabolismo , Interações Hidrofóbicas e Hidrofílicas , Ratos
14.
J Am Chem Soc ; 140(3): 993-1003, 2018 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-29268601

RESUMO

Metal-organic frameworks (MOFs) have shown great promise in catalysis, mainly due to their high content of active centers, large internal surface areas, tunable pore size, and versatile chemical functionalities. However, it is a challenge to rationally design and construct MOFs that can serve as highly stable and reusable heterogeneous catalysts. Here two new robust 3D porous metal-cyclam-based zirconium MOFs, denoted VPI-100 (Cu) and VPI-100 (Ni), have been prepared by a modulated synthetic strategy. The frameworks are assembled by eight-connected Zr6 clusters and metallocyclams as organic linkers. Importantly, the cyclam core has accessible axial coordination sites for guest interactions and maintains the electronic properties exhibited by the parent cyclam ring. The VPI-100 MOFs exhibit excellent chemical stability in various organic and aqueous solvents over a wide pH range and show high CO2 uptake capacity (up to ∼9.83 wt% adsorption at 273 K under 1 atm). Moreover, VPI-100 MOFs demonstrate some of the highest reported catalytic activity values (turnover frequency and conversion efficiency) among Zr-based MOFs for the chemical fixation of CO2 with epoxides, including sterically hindered epoxides. The MOFs, which bear dual catalytic sites (Zr and Cu/Ni), enable chemistry not possible with the cyclam ligand under the same conditions and can be used as recoverable stable heterogeneous catalysts without losing performance.

15.
Front Cell Neurosci ; 12: 505, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30692913

RESUMO

Herpes simplex virus type 1 (HSV-1) is a neurotropic virus able to reach the central nervous system (CNS) after primary infection in oronasal mucosa. HSV-1 establishes latency inside neurons due the repression of its gene expression process, which is related to periodic reactivations in response to cellular stress conditions, constituting a risk factor for neurodegenerative diseases such as Alzheimer's disease (AD). The immediate-early gene Arc plays an essential role in neuronal morphology, synaptic plasticity and memory formation. Arc acts as a hub protein, interacting with components of the endocytic machinery required for AMPA receptor (AMPAR) recycling as well as with proteins of the post-synaptic density and actin cytoskeleton. However, to date, no studies have evaluated whether persistent neurotropic HSV-1 infection modulates the expression or function of Arc protein in brain tissue. Here, we report that neuronal in vivo and in vitro infection of HSV-1 significantly increases Arc protein levels, showing a robust perinuclear distribution in neuronal cell lines, a process that is dependent on an active HSV-1 replication cycle. Finally, we found that silencing Arc protein caused a decrease in HSV-1 proteins and viral progeny, suggesting that Arc is involved in the lifecycle of HSV-1. Our studies strongly suggest that pathogenicity of HSV-1 neuronal reactivations in humans could be mediated in part by Arc neuronal upregulation and its potential role in endocytic trafficking and AMPA-neuronal function impairment. Further studies are necessary to define whether this phenomenon could have repercussions in cognition and learning processes in infected individuals.

16.
Inorg Chem ; 56(22): 13741-13747, 2017 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-29094928

RESUMO

The ditopic ligands 2,6-dicarboxy-9,10-anthraquinone and 1,4-dicarboxy-9,10-anthraquinone were used to synthesize two new UiO-type metal-organic frameworks (MOFs; namely, 2,6-Zr-AQ-MOF and 1,4-Zr-AQ-MOF, respectively). The Pourbaix diagrams (E vs pH) of the MOFs and their ligands were constructed using cyclic voltammetry in aqueous buffered media. The MOFs exhibit chemical stability and undergo diverse electrochemical processes, where the number of electrons and protons transferred was tailored in a Nernstian manner by the pH of the media. Both the 2,6-Zr-AQ-MOF and its ligand reveal a similar electrochemical pKa value (7.56 and 7.35, respectively) for the transition between a two-electron, two-proton transfer (at pH < pKa) and a two-electron, one-proton transfer (at pH > pKa). In contrast, the position of the quinone moiety with respect to the zirconium node, the effect of hydrogen bonding, and the amount of defects in 1,4-Zr-AQ-MOF lead to the transition from a two-electron, three-proton transfer to a two-electron, one-proton transfer. The pKa of this framework (5.18) is analogous to one of the three electrochemical pKa values displayed by its ligand (3.91, 5.46, and 8.80), which also showed intramolecular hydrogen bonding. The ability of the MOFs to tailor discrete numbers of protons and electrons suggests their application as charge carriers in electronic devices.

17.
Biofactors ; 43(1): 73-81, 2017 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-27591048

RESUMO

The activity of acetylcholinesterase (AChE) from human erythrocytes was tested in the presence of the phenolic compounds resveratrol and epigallocatechin-3-gallate (EGCG). Even though the stilbene barely changed this enzymatic activity, EGCG did inhibit AChE. Importantly, it preferentially acted on the membrane-bound enzyme rather than on its soluble form. Actually, it was shown that this flavonoid may bind to the red blood cell membrane surface, which may improve the interaction between EGCG and AChE. Therefore, caution should be taken when screening AChE inhibitors. In fact, testing compounds with the soluble form of the enzyme may underestimate the activity of some of these potential inhibitors, hence it would be advisable not to use them as a sole model system for screening. Moreover, erythrocyte AChE is proposed as a good model for these enzymatic assays. © 2016 BioFactors, 43(1):73-81, 2017.


Assuntos
Acetilcolinesterase/metabolismo , Catequina/análogos & derivados , Inibidores da Colinesterase/farmacologia , Membrana Eritrocítica/enzimologia , Estilbenos/farmacologia , Catequina/farmacologia , Avaliação Pré-Clínica de Medicamentos , Membrana Eritrocítica/efeitos dos fármacos , Humanos , Concentração Inibidora 50 , Resveratrol
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...