Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Front Microbiol ; 9: 3265, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30671051

RESUMO

Successful colonization of the acidic vaginal niche by C. glabrata and C. albicans depends on their ability to cope with the presence of lactic and acetic acids produced by commensal microbiota. As such, the inhibitory effect of these acids at a low pH in growth of C. glabrata and C. albicans was investigated. The effect of the presence of these organic acids in tolerance of the two Candida species to azoles used in treatment of vaginal infections was also investigated including eventual synergistic effects. Under the different experimental conditions tested lactic acid exerted no significant inhibitory effect against C. albicans or C. glabrata, contrasting with the generalized impression that the production of this acid is on the basis of the protective effect exerted by vaginal lactobacilii. Differently, C. glabrata and C. albicans exhibited susceptibility to acetic acid, more prominent at lower pHs and stronger for the latter species. Synergism between acetic acid and azoles was observed both for C. albicans and C. glabrata, while lactic acid-azole synergism was only efficient against C. albicans. Altogether our in vitro results indicate that tolerance to acetic acid at a low pH may play a more relevant role than tolerance to lactic acid in determining competitiveness in the vaginal tract of C. albicans and C. glabrata including under azole stress. Treatment of vaginal candidiasis with azoles may depend on the level of acetic and lactic acids present and improvements could be achieved synergizing the azole with these acids.

2.
FEMS Yeast Res ; 18(1)2018 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-29087506

RESUMO

The frequent emergence of azole resistance among Candida glabrata strains contributes to increase the incidence of infections caused by this species. Whole-genome sequencing of a fluconazole and voriconazole-resistant clinical isolate (FFUL887) and subsequent comparison with the genome of the susceptible strain CBS138 revealed prominent differences in several genes documented to promote azole resistance in C. glabrata. Among these was the transcriptional regulator CgPdr1. The CgPdr1 FFUL887 allele included a K274Q modification not documented in other azole-resistant strains. Transcriptomic profiling evidenced the upregulation of 92 documented targets of CgPdr1 in the FFUL887 strain, supporting the idea that the K274Q substitution originates a CgPdr1 gain-of-function mutant. The expression of CgPDR1K274Q in the FFUL887 background sensitised the cells against high concentrations of organic acids at a low pH (4.5), but had no detectable effect in tolerance towards other environmental stressors. Comparison of the genome of FFUL887 and CBS138 also revealed prominent differences in the sequence of adhesin-encoding genes, while comparison of the transcriptome of the two strains showed a significant remodelling of the expression of genes involved in metabolism of carbohydrates, nitrogen and sulphur in the FFUL887 strain; these responses likely reflecting adaptive responses evolved by the clinical strain during colonisation of the host.


Assuntos
Candida glabrata/efeitos dos fármacos , Candida glabrata/fisiologia , Candidíase/microbiologia , Farmacorresistência Fúngica , Regulação Fúngica da Expressão Gênica , Genômica , Interações Hospedeiro-Patógeno , Transcriptoma , Alelos , Antifúngicos/farmacologia , Biologia Computacional/métodos , Fluconazol/farmacologia , Deleção de Genes , Perfilação da Expressão Gênica , Frequência do Gene , Genoma Fúngico , Genômica/métodos , Humanos , Anotação de Sequência Molecular , Voriconazol/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA