RESUMO
BACKGROUND: Stroke is a leading cause of death and disability worldwide. A major factor in brain damage following ischemia is excitotoxicity caused by elevated levels of the neurotransmitter glutamate. In the brain, glutamate homeostasis is a primary function of astrocytes. Amburana cearensis has long been used in folk medicine and seed extract obtained with dichloromethane (EDAC) have previously been shown to exhibit cytoprotective activity in vitro. The aim of the present study was to analyse the activity of EDAC in hippocampal brain slices. METHODS: We prepared a dichloromethane extract (EDAC) from A. cearensis seeds and characterized the chemical constituents by 1H and 13C-NMR. Hippocampal slices from P6-8 or P90 Wistar rats were used for cell viability assay or glutamate uptake test. Hippocampal slices from P10-12 transgenic mice SOX10-EGFP and GFAP-EGFP and immunofluorescence for GS, GLAST and GLT1 were used to study oligodendrocytes and astrocytes. RESULTS: Astrocytes play a critical role in glutamate homeostasis and we provide immunohistochemical evidence that in excitotoxicity EDAC increased expression of glutamate transporters and glutamine synthetase, which is essential for detoxifying glutamate. Next, we directly examined astrocytes using transgenic mice in which glial fibrillary acidic protein (GFAP) drives expression of enhanced green fluorescence protein (EGFP) and show that glutamate excitotoxicity caused a decrease in GFAP-EGFP and that EDAC protected against this loss. This was examined further in the oxygen-glucose deprivation (OGD) model of ischemia, where EDAC caused an increase in astrocytic process branching, resulting in an increase in GFAP-EGFP. Using SOX10-EGFP reporter mice, we show that the acute response of oligodendrocytes to OGD in hippocampal slices is a marked loss of their processes and EDAC protected oligodendrocytes against this damage. CONCLUSION: This study provides evidence that EDAC is cytoprotective against ischemia and glutamate excitotoxicity by modulating astrocyte responses and stimulating their glutamate homeostatic mechanisms.
Assuntos
Astrócitos , Ácido Glutâmico , Ratos , Camundongos , Animais , Ácido Glutâmico/metabolismo , Ratos Wistar , Cloreto de Metileno/metabolismo , Hipocampo/metabolismo , Isquemia/metabolismo , Camundongos Transgênicos , Oxigênio/metabolismo , Extratos Vegetais/farmacologia , Extratos Vegetais/metabolismo , Homeostase , Oligodendroglia/metabolismo , SementesRESUMO
OBJECTIVES: In this study, an in vivo model of Aß toxicity was used to investigate the effects of this peptide and the treatment with genistein on the lipid composition (gangliosides, phospholipids and cholesterol) in the frontal cortex of rats. METHODS: Male Wistar rats received bilateral intracerebroventricular infusions of Aß1-42 (2 nmol) and genistein 10 mg/kg orally for 10 days. Frontal cortex was homogenized with chloroform:methanol for lipid extraction and ganglioside, phospholipid and cholesterol levels were evaluated. RESULTS: The Aß-infused animals showed a significant decrease in ganglioside concentration and relative reduction of GD1b and GQ1b species. Treatment with genistein prevented the decrease in ganglioside levels. Phospholipid and cholesterol contents did not show significant differences. DISCUSSION: Considering the roles of gangliosides on neuronal function, findings described here can contribute to the knowledge of the potential neuroprotective mechanisms of genistein against Aß-induced alterations in the frontal cortex of rats and provide a novel view in the multifaceted scenario associated with its beneficial effects.
Assuntos
Peptídeos beta-Amiloides , Lobo Frontal , Gangliosídeos , Genisteína , Peptídeos beta-Amiloides/toxicidade , Animais , Colesterol/química , Lobo Frontal/química , Gangliosídeos/química , Genisteína/farmacologia , Masculino , Fragmentos de Peptídeos/toxicidade , Fosfolipídeos/química , Ratos , Ratos WistarRESUMO
Sex differences in the brain of mammals range from neuroarchitecture through cognition to cellular metabolism. The hippocampus, a structure mostly associated with learning and memory, presents high vulnerability to neurodegeneration and aging. Therefore, we explored basal sex-related differences in the proteome of organotypic hippocampal slice culture, a major in vitro model for studying the cellular and molecular mechanisms related to neurodegenerative disorders. Results suggest a greater prevalence of astrocytic metabolism in females and significant neuronal metabolism in males. The preference for glucose use in glycolysis, pentose phosphate pathway and glycogen metabolism in females and high abundance of mitochondrial respiration subunits in males support this idea. An overall upregulation of lipid metabolism was observed in females. Upregulation of proteins responsible for neuronal glutamate and GABA synthesis, along with synaptic associated proteins, were observed in males. In general, the significant spectrum of pathways known to predominate in neurons or astrocytes, together with the well-known neuronal and glial markers observed, revealed sex-specific metabolic differences in the hippocampus. TEM qualitative analysis might indicate a greater presence of mitochondria at CA1 synapses in females. These findings are crucial to a better understanding of how sex chromosomes can influence the physiology of cultured hippocampal slices and allow us to gain insights into distinct responses of males and females on neurological diseases that present a sex-biased incidence.
Assuntos
Hipocampo/metabolismo , Proteômica/métodos , Animais , Feminino , Citometria de Fluxo , Hipocampo/ultraestrutura , Humanos , Metabolismo dos Lipídeos/fisiologia , Masculino , Microscopia Eletrônica de Transmissão , Sistema Nervoso/metabolismo , Sistema Nervoso/ultraestrutura , Neuroglia/metabolismo , Neurotransmissores/metabolismo , Caracteres Sexuais , Transdução de Sinais/fisiologiaRESUMO
The Developmental Origins of Health and Disease (DOHaD) states that intrauterine maternal environment influences postnatal life by programming offspring's metabolism. Intrauterine milieu induced by exercise during pregnancy promotes long-lasting benefits to the offspring's health and seems to offer some resistance against chronic diseases in adult life. Alzheimer's disease is a public health concern with limited treatment options. In the present study, we assessed the potential of maternal exercise during pregnancy in long-term programming of young adult male rat offspring's cerebellar metabolism in conferring neuroprotection against amyloid-ß (Aß) neurotoxicity. Female Wistar rats were submitted to a swimming protocol 1 week prior mating and throughout pregnancy (five sessions/a week lasting 30 min). Aß oligomers were infused bilaterally in the brain ventricles of 60-day-old male offspring. Fourteen days after surgery, we measured parameters related to redox state, mitochondrial function, and the immunocontent of proteins related to synaptic function. We found that maternal exercise during pregnancy attenuated several parameters in the offspring's male rat cerebellum, such as the reactive species rise, the increase of inducible nitric oxide synthase immunocontent and tau phosphorylation induced by Aß oligomers, increased mitochondrial fission indicated by dynamin-related protein 1 (DRP1), and protein oxidation identified by carbonylation. Strikingly, we find that maternal exercise promotes changes in the rat offspring's cerebellum that are still evident in young adult life. These favorable neurochemical changes in offspring's cerebellum induced by maternal exercise may contribute to a protective phenotype against Aß-induced neurotoxicity in young adult male rat offspring.
Assuntos
Peptídeos beta-Amiloides/metabolismo , Cerebelo/patologia , Condicionamento Físico Animal/fisiologia , Efeitos Tardios da Exposição Pré-Natal/prevenção & controle , Animais , Cerebelo/metabolismo , Modelos Animais de Doenças , Feminino , Humanos , Masculino , Oxirredução , Gravidez , Efeitos Tardios da Exposição Pré-Natal/metabolismo , Efeitos Tardios da Exposição Pré-Natal/patologia , Ratos , Ratos WistarRESUMO
Alzheimer's disease is a neurodegenerative disorder characterized by extracellular deposition of amyloid-ß (Aß) peptide and hyperphosphorylation of Tau protein, which ultimately leads to the formation of intracellular neurofibrillary tangles and cell death. Increasing evidence indicates that genistein, a soy isoflavone, has neuroprotective effects against Aß-induced toxicity. However, the molecular mechanisms involved in its neuroprotection are not well understood. In this study, we have established a neuronal damage model using retinoic-acid differentiated SH-SY5Y cells treated with different concentrations of Aß25-35 to investigate the effect of genistein against Aß-induced cell death and the possible involvement of protein kinase B (PKB, also termed Akt), glycogen synthase kinase 3ß (GSK-3ß), and Tau as an underlying mechanism to this neuroprotection. Differentiated SH-SY5Y cells were pre-treated for 24 hr with genistein (1 and 10 nM) and exposed to Aß25-35 (25 µM), and we found that genistein partially inhibited Aß induced cell death, primarily apoptosis. Furthermore, the protective effect of genistein was associated with the inhibition of Aß-induced Akt inactivation and Tau hyperphosphorylation. These findings reinforce the neuroprotective effects of genistein against Aß toxicity and provide evidence that its mechanism may involve regulation of Akt and Tau proteins.
Assuntos
Peptídeos beta-Amiloides/toxicidade , Genisteína/farmacologia , Neurônios/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Animais , Apoptose/efeitos dos fármacos , Morte Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Glicogênio Sintase Quinase 3 beta/metabolismo , Humanos , Neurônios/fisiologia , Fosforilação/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-akt/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais/efeitos dos fármacos , Proteínas tau/efeitos dos fármacos , Proteínas tau/metabolismoRESUMO
A redispersible spray-dried formulation containing curcumin-loaded, lipid-core nanocapsules (LNC-C) was developed for oral administration. The neuroprotective activity of curcumin after the spray-drying process was evaluated in vitro. The spray-dried powder (SD-LNC-C) was produced using a drying adjuvant composed of a blend of maltodextrin and L-leucine (90:10 w/w). Acceptable process yield (~ 70%) and drug content (6.5 ± 0.2 mg g-1) were obtained. SD-LNC-C was formed by smooth, spherical-shaped particles, and confocal Raman analysis indicated the distribution of the LNC-C on the surface of the leucine/maltodextrin agglomerates. The surface of the agglomerates was formed by a combination of LNC-C and adjuvants, and laser diffraction showed that SD-LNC-C had adequate aqueous redispersion, with no loss of controlled drug release behaviour of LNC-C. The in vitro curcumin activity against the lipopolysaccharide (LPS)-induced proinflammatory response in organotypic hippocampal slice cultures was evaluated. Both formulations (LNC-C and SD-LNC-C) reduced TNF-α to similar levels. Therefore, neuroprotection of curcumin in vitro may be improved by nanoencapsulation followed by spray-drying, with no loss of this superior performance. Hence, the redispersible spray-dried powder proposed here represents a suitable approach for the development of innovative nanomedicines containing curcumin for the prevention/treatment of neurodegenerative diseases.
Assuntos
Curcumina/farmacologia , Dessecação/métodos , Neuroproteção/efeitos dos fármacos , Administração Oral , Animais , Curcumina/administração & dosagem , Curcumina/química , Hipocampo/efeitos dos fármacos , Técnicas In Vitro , Masculino , Nanocápsulas , Tamanho da Partícula , Polissacarídeos/química , Pós , Ratos WistarRESUMO
Stroke is frequently associated with severe neurological decline and mortality, and its incidence is expected to increase due to aging population. The only available pharmacological treatment for cerebral ischemia is thrombolysis, with narrow therapeutic windows. Efforts aimed to identify new therapeutics are crucial. In this study, we look into plausible molecular and cellular targets for JM-20, a new hybrid molecule, against ischemic stroke in vivo. Male Wistar rats were subjected to 90 min middle cerebral artery occlusion (MCAO) following 23 h of reperfusion. Animals treated with 8 mg/kg JM-20 (p.o., 1 h after reperfusion) showed minimal neurological impairment and lower GABA and IL-1ß levels in CSF when compared to damaged rats that received vehicle. Immunocontent of pro-survival, phosphorylated Akt protein decreased in the cortex after 24 h as result of the ischemic insult, accompanied by decreased number of NeuN+ cells in the peri-infarct cortex, cornu ammonis 1 (CA1) and dentate gyrus (DG) areas. Widespread reactive astrogliosis in both cortex and hippocampus (CA1, CA3, and DG areas) was observed 24 h post-ischemia. JM-20 prevented the activated Akt reduction, neuronal death, and astrocytes reactivity throughout the brain. Overall, the results reinforce the pharmacological potential of JM-20 as neuroprotective agent and provide important evidences about its molecular and cellular targets in this model of cerebral ischemia.
Assuntos
Astrócitos/patologia , Benzodiazepinas/uso terapêutico , Infarto Encefálico/tratamento farmacológico , Encéfalo/patologia , Infarto da Artéria Cerebral Média/tratamento farmacológico , Infarto da Artéria Cerebral Média/patologia , Neurônios/patologia , Niacina/análogos & derivados , Animais , Astrócitos/efeitos dos fármacos , Astrócitos/metabolismo , Benzodiazepinas/farmacologia , Infarto Encefálico/líquido cefalorraquidiano , Infarto Encefálico/patologia , Região CA3 Hipocampal/efeitos dos fármacos , Região CA3 Hipocampal/metabolismo , Região CA3 Hipocampal/patologia , Morte Celular/efeitos dos fármacos , Giro Denteado/efeitos dos fármacos , Giro Denteado/metabolismo , Giro Denteado/patologia , Proteína Glial Fibrilar Ácida/metabolismo , Gliose/metabolismo , Gliose/patologia , Infarto da Artéria Cerebral Média/líquido cefalorraquidiano , Interleucina-10/líquido cefalorraquidiano , Interleucina-1beta/líquido cefalorraquidiano , Masculino , Neurônios/efeitos dos fármacos , Niacina/farmacologia , Niacina/uso terapêutico , Fosforilação/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos Wistar , Resultado do Tratamento , Ácido gama-Aminobutírico/líquido cefalorraquidianoRESUMO
Alzheimer's disease (AD) is the main aging-associated neurodegenerative disorder and is characterized by mitochondrial dysfunction, oxidative stress, synaptic failure, and cognitive decline. It has been a challenge to find disease course-modifying treatments. However, several studies demonstrated that regular physical activity and exercise are capable of promoting brain health by improving the cognitive function. Maternal lifestyle, including regular exercise during pregnancy, has also been shown to influence fetal development and disease susceptibility in adulthood through fetal metabolism programming. Here, we investigated the potential neuroprotective role of regular maternal swimming, before and during pregnancy, against amyloid-ß neurotoxicity in the adult offspring. Behavioral and neurochemical analyses were performed 14 days after male offspring received a single, bilateral, intracerebroventricular (icv) injection of amyloid-ß oligomers (AßOs). AßOs-injected rats of the sedentary maternal group exhibited learning and memory deficits, along with reduced synaptophysin, brain-derived neurotrophic factor (BDNF) levels, and alterations of mitochondrial function. Strikingly, the offspring of the sedentary maternal group had AßOs-induced behavioral alterations that were prevented by maternal exercise. This effect was accompanied by preventing the alteration of synaptophysin levels in the offspring of exercised dams. Additionally, offspring of the maternal exercise group exhibited an augmentation of functional mitochondria, as indicated by increases in mitochondrial mass and membrane potential, α-ketoglutarate dehydrogenase, and cytochrome c oxidase enzymes activities. Moreover, maternal exercise during pregnancy induced long-lasting modulation of fusion and fission proteins, Mfn1 and Drp1, respectively. Overall, our data demonstrates a potential protective effect of exercise during pregnancy against AßOs-induced neurotoxicity in the adult offspring brain, by mitigating the neurodegenerative process triggered by Alzheimer-associated AßOs through programming the brain metabolism.
Assuntos
Peptídeos beta-Amiloides , Encéfalo/metabolismo , Transtornos Cognitivos/prevenção & controle , Condicionamento Físico Animal/fisiologia , Efeitos Tardios da Exposição Pré-Natal/metabolismo , Animais , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Transtornos Cognitivos/induzido quimicamente , Transtornos Cognitivos/metabolismo , Feminino , Masculino , Mitocôndrias/metabolismo , Gravidez , Ratos , Ratos Wistar , Sinaptofisina/metabolismoRESUMO
Several environmental factors affect child development, such as the intrauterine environment during the embryonic and fetal development and early postnatal environment provided by maternal behavior. Although mechanistic effects of maternal exercise on offspring health improvement are not yet completely understood, the number of reports published demonstrating the positive influence of maternal exercise have increase. Herein, we addressed issues related to early postnatal environment provided by maternal behavior and early developmental physical landmarks, sensorimotor reflexes, and motor movements ontogeny. In brief, adult female rats underwent involuntary swimming exercise, in a moderated intensity, one week before mating and throughout pregnancy, 30 min a day, 5 days a week. Maternal exercised dams have unchanged gestational outcomes compared to sedentary dams. We found no differences concerning the frequency of pup-directed behavior displayed by dams. However, sedentary dams displayed a poorer pattern of maternal care quality during dark cycle than exercised dams. Physical landmarks and sensorimotor reflexes development of female and male littermates did not differ between maternal groups. Developmental motor parameters such as immobility, lateral head movements, head elevation, pivoting, rearing with forelimb support and crawling frequencies did not differ between groups. Pups born to exercised dams presented higher frequency of walking and rearing on the hind legs. These data suggest that female and male littermates of exercised group present a high frequency of exploratory behavior over sedentary littermates. Taken together, the present findings reinforce that maternal exercise throughout pregnancy represent a window of opportunity to improve offspring's postnatal health.
Assuntos
Comportamento Materno , Condicionamento Físico Animal/métodos , Resultado da Gravidez , Efeitos Tardios da Exposição Pré-Natal/prevenção & controle , Efeitos Tardios da Exposição Pré-Natal/fisiopatologia , Natação/fisiologia , Fatores Etários , Análise de Variância , Animais , Animais Recém-Nascidos , Comportamento Exploratório/fisiologia , Feminino , Atividade Motora/fisiologia , Gravidez , Ratos , Ratos Wistar , Reflexo/fisiologiaRESUMO
Glioblastoma (GBM) is the most common and aggressive primary malignant brain tumor in adults. Hypoxia is a distinct feature in GBM and plays a significant role in tumor progression, resistance to treatment, and poor outcome. However, there is lack of studies relating type of cell death, status of Akt phosphorylation on Ser473, mitochondrial membrane potential, and morphological changes of tumor cells after hypoxia and reoxygenation. The rat glioma C6 cell line was exposed to oxygen deprivation (OD) in 5 % fetal bovine serum (FBS) or serum-free media followed by reoxygenation (RO). OD induced apoptosis on both 5 % FBS and serum-free groups. Overall, cells on serum-free media showed more profound morphological changes than cells on 5 % FBS. Moreover, our results suggest that OD combined with absence of serum provided a favorable environment for glioblastoma dedifferentiation to cancer stem cells, since nestin, and CD133 levels increased. Reoxygenation is present in hypoxic tumors through microvessel formation and cell migration to oxygenated areas. However, few studies approach these phenomena when analyzing hypoxia. We show that RO caused morphological alterations characteristic of cells undergoing a differentiation process due to increased GFAP. In the present study, we characterized an in vitro hypoxic microenvironment associated with GBM tumors, therefore contributing with new insights for the development of therapeutics for resistant glioblastoma.
Assuntos
Neoplasias Encefálicas/patologia , Glioblastoma/patologia , Hipóxia/patologia , Células-Tronco Neoplásicas/patologia , Neurônios/patologia , Microambiente Tumoral , Animais , Apoptose/fisiologia , Neoplasias Encefálicas/metabolismo , Linhagem Celular Tumoral , Glioblastoma/metabolismo , Hipóxia/metabolismo , Potencial da Membrana Mitocondrial/fisiologia , Células-Tronco Neoplásicas/metabolismo , Neurônios/metabolismo , Oxigênio/metabolismo , Fosforilação , Proteínas Proto-Oncogênicas c-akt/metabolismo , RatosRESUMO
Glioblastoma is the most frequent and malignant brain tumor. Treatment includes chemotherapy with temozolomide concomitant with surgical resection and/or irradiation. However, a number of cases are resistant to temozolomide, as well as the human glioblastoma cell line U138-MG. We investigated doxazosin's (an antihypertensive drug) activity against glioblastoma cells (C6 and U138-MG) and its neurotoxicity on primary astrocytes and organoptypic hippocampal cultures. For this study, the following methods were used: citotoxicity assays, flow cytometry, western-blotting and confocal microscopy. We showed that doxazosin induces cell death on C6 and U138-MG cells. We observed that doxazosin's effects on the PI3K/Akt pathway were similar as LY294002 (PI3K specific inhibitor). In glioblastoma cells treated with doxasozin, Akt levels were greatly reduced. Upon examination of activities of proteins downstream of Akt we observed upregulation of GSK-3ß and p53. This led to cell proliferation inhibition, cell death induction via caspase-3 activation and cell cycle arrest at G0/G1 phase in glioblastoma cells. We used in this study Lapatinib, a tyrosine kinase inhibitor, as a comparison with doxazosin because they present similar chemical structure. We also tested the neurocitotoxicity of doxazosin in primary astrocytes and organotypic cultures and observed that doxazosin induced cell death on a small percentage of non-tumor cells. Aggressiveness of glioblastoma tumors and dismal prognosis require development of new treatment agents. This includes less toxic drugs, more selective towards tumor cells, causing less damage to the patient. Therefore, our results confirm the potential of doxazosin as an attractive therapeutic antiglioma agent.
Assuntos
Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Neoplasias Encefálicas/tratamento farmacológico , Doxazossina/farmacologia , Glioblastoma/tratamento farmacológico , Inibidores de Fosfoinositídeo-3 Quinase , Proteínas Proto-Oncogênicas c-akt/antagonistas & inibidores , Proteína Supressora de Tumor p53/biossíntese , Animais , Astrócitos/efeitos dos fármacos , Caspase 3/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Cromonas/farmacologia , Doxazossina/toxicidade , Ativação Enzimática/efeitos dos fármacos , Pontos de Checagem da Fase G1 do Ciclo Celular/efeitos dos fármacos , Glicogênio Sintase Quinase 3 beta/biossíntese , Hipocampo/efeitos dos fármacos , Humanos , Lapatinib , Morfolinas/farmacologia , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Quinazolinas/farmacologia , Ratos , Ratos WistarRESUMO
Treated glioblastoma multiforme (GBM) patients only survive 6 to 14months after diagnosis; therefore, the development of novel therapeutic strategies to treat gliomas remains critically necessary. Considering that phenolic compounds, like quercetin, have the potential to be used in the chemotreatment of gliomas and that some flavonoids exhibit the ability to cross the BBB, in the present study, we investigated the antitumor effect of flavonoids (including chalcones, flavones, flavanones and flavonols). Initially their activities were tested in C6 glioma cells screened using the MTT method, resulting in the selection of chalcone 2 whose feasibility was confirmed by a Trypan Blue exclusion assay in the low µM range on C6 glioma cells. Cell cycle and apoptotic death analyses on C6 glioma cells were also performed, and chalcone 2 increased the apoptosis of the cells but did not alter the cell cycle progression. In addition, treatments with these two compounds were not cytotoxic to hippocampal organotypic cultures, a model of healthy neural cells. Furthermore, the results indicated that 2 induced apoptosis by inhibition of NF-κB and activation of active caspase-3 in glioma cells, suggesting that it is a potential prototype to develop new treatments for GBM in the future.
Assuntos
Antineoplásicos/farmacologia , Caspase 3/metabolismo , Morte Celular/efeitos dos fármacos , NF-kappa B/metabolismo , Quercetina/análogos & derivados , Quercetina/farmacologia , Animais , Apoptose/efeitos dos fármacos , Transporte Biológico , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/metabolismo , Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Glioma/tratamento farmacológico , Glioma/metabolismo , Hipocampo/efeitos dos fármacos , Hipocampo/patologia , Masculino , Ratos , Ratos WistarRESUMO
Alzheimer's disease (AD) is a progressive neurodegenerative disease characterized in the brain by the formation of amyloid-beta (Aß)-containing plaques and neurofibrillary tangles containing the microtubule-associated protein tau. Neuroinflammation is another feature of AD and astrocytes are receiving increasing attention as key contributors. Although some progress has been made, the molecular mechanisms underlying the pathophysiology of AD remain unclear. Interestingly, some of the main proteins involved in AD, including amyloid precursor protein (APP) and tau, have recently been shown to be SUMOylated. The post-translational modification by SUMO (small ubiquitin-like modifier) has been shown to regulate APP and tau and may modulate other proteins implicated in AD. Here we present an overview of recent studies suggesting that protein SUMOylation might be involved in the underlying pathogenic mechanisms of AD and discuss how this could be exploited for therapeutic intervention.
RESUMO
Cerebral ischemia is the third most common cause of death and a major cause of disability worldwide. Beyond a shortage of essential metabolites, ischemia triggers many interconnected pathophysiological events, including excitotoxicity, oxidative stress, inflammation and apoptosis. Here, we investigated the neuroprotective mechanisms of JM-20, a novel synthetic molecule, focusing on the phosphoinositide-3-kinase (PI3K)/Akt survival pathway and glial cell response as potential targets of JM-20. For this purpose, we used organotypic hippocampal slice cultures exposed to oxygen-glucose deprivation (OGD) to achieve ischemic/reperfusion damage in vitro. Treatment with JM-20 at 0.1 and 10 µM reduced PI incorporation (indicative of cell death) after OGD. OGD decreased the phosphorylation of Akt (pro-survival) and GSK 3ß (pro-apoptotic), resulting in respective inhibition and activation of these proteins. Treatment with JM20 prevented the reduced phosphorylation of these proteins after OGD, representing a shift from pro-apoptotic to pro-survival signaling. The OGD-induced activation of caspase-3 was also attenuated by JM-20 treatment at 10 µM. Moreover, in cultures treated with JM-20 and exposed to OGD conditioning, we observed a decrease in activated microglia, as well as a decrease in interleukin (IL)-1ß, IL-6 and tumor necrosis factor (TNF)-α release into the culture medium, while the level of the anti-inflammatory IL-10 increased. GFAP immunostaining and IB4 labeling showed that JM-20 treatment significantly augmented GFAP immunoreactivity after OGD, when compared with cultures exposed to OGD only, suggesting the activation of astroglial cells. Our results confirm that JM-20 has a strong neuroprotective effect against ischemic injury and suggest that the mechanisms involved in this effect may include the modulation of reactive astrogliosis, as well as neuroinflammation and the anti-apoptotic cell signaling pathway.
Assuntos
Benzodiazepinas/farmacologia , Morte Celular/efeitos dos fármacos , Quinase 3 da Glicogênio Sintase/metabolismo , Hipocampo/efeitos dos fármacos , Niacina/análogos & derivados , Oxigênio/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Animais , Animais Recém-Nascidos , Glucose/metabolismo , Glicogênio Sintase Quinase 3 beta , Hipocampo/metabolismo , Masculino , Neurônios/efeitos dos fármacos , Neuroproteção/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Niacina/farmacologia , Fosfatidilinositol 3-Quinases/metabolismo , Ratos WistarRESUMO
We described the first synthesis of fatty acid 3,4-dihydropyrimidinones (DHPM-fatty acids) using the Biginelli multicomponent reaction. Antiproliferative activity on two glioma cell lines (C6 rat and U-138-MG human) was also reported. The novel DHPM-fatty acids reduced glioma cell viability relative to temozolomide. Hybrid oxo-monastrol-palmitic acid was the most potent, reducing U-138-MG human cell viability by ca. 50% at 10 µM. In addition, the DHPM-fatty acids showed a large safety range to neural cells, represented by the organotypic hippocampal culture. These results suggest that the increased lipophilicity of DHPM-fatty acids offer a promising approach to overcoming resistance to chemotherapy and may play an important role in the development of new antitumor drugs.
Assuntos
Antineoplásicos/síntese química , Antineoplásicos/farmacologia , Ácidos Graxos/síntese química , Ácidos Graxos/farmacologia , Glioma/patologia , Uridina/análogos & derivados , Animais , Antineoplásicos/química , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Técnicas de Química Sintética , Desenho de Fármacos , Ácidos Graxos/química , Humanos , Masculino , Ratos , Ratos Wistar , Uridina/químicaRESUMO
We previously showed that JM-20, a novel 1,5-benzodiazepine fused to a dihydropyridine moiety, possessed an anxiolytic profile similar to diazepam and strong neuroprotective activity in different cell models relevant to cerebral ischemia. Here, we investigated whether JM-20 protects against ischemic neuronal damage in vitro and in vivo. The effects of JM-20 were evaluated on hippocampal slices subjected to oxygen and glucose deprivation (OGD). For in vivo studies, Wistar rats were subjected 90 min of middle cerebral artery occlusion (MCAo) and oral administration of JM-20 at 2, 4 and 8 mg/kg 1 h following reperfusion. Twenty-four hours after cerebral blood flow restoration, neurological deficits were scored, and the infarct volume, histopathological changes in cortex, number of hippocampal and striatal neurons, and glutamate/aspartate concentrations in the cerebrospinal fluid were measured. Susceptibility to brain mitochondrial swelling, membrane potential dissipation, H2O2 generation, cytochrome c release, Ca2+ accumulation, and morphological changes in the organelles were assessed 24 h post-ischemia. In vitro, JM-20 (1 and 10 µM) administered during reperfusion significantly reduced cell death in hippocampal slices subjected to OGD. In vivo, JM-20 treatment (4 and 8 mg/kg) significantly decreased neurological deficit scores, edema formation, total infarct volumes and histological alterations in different brain regions. JM-20 treatment also protected brain mitochondria from ischemic damage, most likely by preventing Ca2+ accumulation in organelles. Moreover, an 8-mg/kg JM-20 dose reduced glutamate and aspartate concentrations in cerebrospinal fluid and the deleterious effects of MCAo even when delivered 8 h after blood flow restoration. These results suggest that in rats, JM-20 is a robust neuroprotective agent against ischemia/reperfusion injury with a wide therapeutic window. Our findings support the further examination of potential clinical JM-20 use to treat acute ischemic stroke.
Assuntos
Benzodiazepinas/farmacologia , Isquemia Encefálica/tratamento farmacológico , Aminoácidos Excitatórios/metabolismo , Mitocôndrias/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Niacina/análogos & derivados , Animais , Encéfalo/efeitos dos fármacos , Encéfalo/patologia , Encéfalo/fisiopatologia , Isquemia Encefálica/patologia , Isquemia Encefálica/fisiopatologia , Morte Celular/efeitos dos fármacos , Morte Celular/fisiologia , Modelos Animais de Doenças , Glucose/deficiência , Infarto da Artéria Cerebral Média/tratamento farmacológico , Infarto da Artéria Cerebral Média/fisiopatologia , Masculino , Mitocôndrias/patologia , Mitocôndrias/fisiologia , Niacina/farmacologia , Distribuição Aleatória , Ratos Wistar , Técnicas de Cultura de TecidosRESUMO
Resveratrol, a natural polyphenolic compound, has attracted considerable interest for its anti-inflammatory and neuroprotective properties. However, the biological effects of resveratrol appear strongly limited because it is photosensitive, easily oxidized, and has unfavorable pharmacokinetics. The present study aimed to elucidate the effect of resveratrol on Abeta-triggered neuroinflammation by comparing the effects of free resveratrol (RSV) treatment with those of treatment with resveratrol-loaded lipid-core nanocapsules (RSV-LNC). Organotypic hippocampal cultures were stimulated by Abeta1-42 with or without different concentrations of RSV or RSV-LNC. We found that Abeta triggered a harmful neuroinflammation process in organotypic hippocampal cultures. Pre- and co-treatments with RSV-LNC were able to protect cultures against ROS formation and cell death induced by Abeta, possibly through sustained blocking of TNF-alpha, IL-1beta, and IL-6 release. Furthermore, RSV-LNC was able to increase IL-10 release even in the presence of Abeta and prevent or decrease both glial and JNK activation. On the other hand, both pre- and co-treatment with RSV exhibited a lower ability to prevent or decrease neuroinflammation, ROS formation, and cell death, and failed to increase IL-10 release. Our findings suggest that modulation of neuroinflammation through a combination of resveratrol and a lipid-core nanocapsule-based delivery system might represent a promising approach for preventing or delaying the neurodegenerative process triggered by Abeta. The results open new vistas to the interplay between inflammation and amyloid pathology.
Assuntos
Anti-Inflamatórios/farmacologia , Inflamação/prevenção & controle , Lipídeos/farmacologia , Nanocápsulas/química , Neurônios/efeitos dos fármacos , Estilbenos/farmacologia , Peptídeos beta-Amiloides , Animais , Anti-Inflamatórios/administração & dosagem , Células Cultivadas , Sinergismo Farmacológico , Encefalite/induzido quimicamente , Encefalite/patologia , Encefalite/prevenção & controle , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Hipocampo/patologia , Inflamação/induzido quimicamente , Inflamação/metabolismo , Inflamação/patologia , Lipídeos/administração & dosagem , Lipídeos/química , Masculino , Neurônios/patologia , Ratos , Ratos Wistar , Espécies Reativas de Oxigênio/metabolismo , Resveratrol , Estilbenos/administração & dosagemRESUMO
BACKGROUND/AIM: Despite recent progress in glioblastoma treatment, prognosis is still poor. Monastrol is a kinesin spindle protein (KSP) inhibitor and anticancer effects for this molecule have been reported. Here we describe the effect of LaSOM 65, a monastrol derivated compound, against glioma cell lines. MATERIALS AND METHODS: Cell counting, viability assay, lactate dehydrogenase (LDH) activity, cell-cycle analysis, immunofluorescence and organotypic hippocampal slice cultures were performed. RESULTS: LaSOM 65 reduced cell number and cell viability of gliomas cells, but did not cause arrest in the cell cycle at the G2/M phase. Measurement of LDH activity showed that LaSOM 65 induces necrosis after 48 h of treatment. CONCLUSION: LaSOM 65 appears to a be promising new molecule to treat glioblastoma since it promotes a decrease of cell growth and cell viability of glioma cells in vitro and does not induces the neurotoxic characteristics of the anti-mitotic drugs currently used.
Assuntos
Antineoplásicos/farmacologia , Pirimidinas/farmacologia , Tionas/farmacologia , Animais , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Núcleo Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Glioblastoma , Hipocampo/efeitos dos fármacos , Humanos , L-Lactato Desidrogenase/metabolismo , Necrose , Ratos , Técnicas de Cultura de Tecidos , Tubulina (Proteína)/metabolismoRESUMO
Alzheimer's disease (AD) is a neurodegenerative disorder whose pathogenesis involves production and aggregation of amyloid-ß peptide (Aß). Aß-induced toxicity is believed to involve alterations on as Na(+),K(+)-ATPase and acetylcholinesterase (AChE) activities, prior to neuronal death. Drugs able to prevent or to reverse these biochemical changes promote neuroprotection. GM1 is a ganglioside proposed to have neuroprotective roles in AD models, through mechanisms not yet fully understood. Therefore, this study aimed to investigate the effect of Aß1-42 infusion and GM1 treatment on recognition memory and on Na(+),K(+)-ATPase and AChE activities, as well as, on antioxidant defense in the brain cortex and the hippocampus. For these purposes, Wistar rats received i.c.v. infusion of fibrilar Aß1-42 (2 nmol) and/or GM1 (0.30 mg/kg). Behavioral and biochemical analyses were conducted 1 month after the infusion procedures. Our results showed that GM1 treatment prevented Aß-induced cognitive deficit, corroborating its neuroprotective function. Aß impaired Na(+),K(+)-ATPase and increase AChE activities in hippocampus and cortex, respectively. GM1, in turn, has partially prevented Aß-induced alteration on Na(+),K(+)-ATPase, though with no impact on AChE activity. Aß caused a decrease in antioxidant defense, specifically in hippocampus, an effect that was prevented by GM1 treatment. GM1, both in cortex and hippocampus, was able to increase antioxidant scavenge capacity. Our results suggest that Aß-triggered cognitive deficit involves region-specific alterations on Na(+),K(+)-ATPase and AChE activities, and that GM1 neuroprotection involves modulation of Na(+),K(+)-ATPase, maybe by its antioxidant properties. Although extrapolation from animal findings is difficult, it is conceivable that GM1 could play an important role in AD treatment.
Assuntos
Acetilcolinesterase/metabolismo , Peptídeos beta-Amiloides/farmacologia , Gangliosídeo G(M1)/farmacologia , Fármacos Neuroprotetores/farmacologia , Fragmentos de Peptídeos/farmacologia , ATPase Trocadora de Sódio-Potássio/metabolismo , Acetilcolinesterase/efeitos dos fármacos , Animais , Injeções Intraventriculares , Masculino , Memória/efeitos dos fármacos , Ratos , Ratos Wistar , ATPase Trocadora de Sódio-Potássio/efeitos dos fármacosRESUMO
OBJECTIVE: Accumulating evidence indicates that curcumin potently protects against beta-amyloid (Abeta) due to its oxygen free radicals scavenging and anti-inflammatory properties. However, cellular mechanisms that may underlie the neuroprotective effect of curcumin in Abeta-induced toxicity are not fully understood yet. The present study was undertaken to investigate the mechanisms involved in neuroprotective effects of curcumin, particularly involving Wnt/beta-catenin and PI3K pathways. METHODS: Organotypic hippocampal slice cultures were treated with curcumin and exposed to Abeta1-42 for 48 hours. Synaptic dysfunction, cell death, ROS formation, neuroinflammation and beta-catenin, Akt, and GSK-3beta phosphorylation were measured to determine the effects of curcumin against Abeta toxicity. RESULTS: Curcumin significantly attenuated Abeta-induced cell death, loss of synaptophysin, and ROS generation. Furthermore, curcumin was able to decrease IL-6 release and increase IL-10 release, and prevented glial activation. The phosphorylation of beta-catenin was avoided and the levels of free beta-catenin were increased by curcumin to promote cell survival upon treatment with Abeta. Curcumin, in the presence of Abeta, activated Akt which in turn phosphorylates GSK-3beta, and resulted in the inhibition of GSK-3beta. The presence of LY294002, an inhibitor of PI3K pathway, blocked the pro-survival effect of curcumin. DISCUSSION: These results reinforce the neuroprotective effects of curcumin on Abeta toxicity and add some evidence that its mechanism may involve beta-catenin and PI3K signaling pathway in organotypic hippocampal slice culture.