Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sensors (Basel) ; 23(24)2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-38139691

RESUMO

Wireless communications systems are traditionally designed by independently optimising signal processing functions based on a mathematical model. Deep learning-enabled communications have demonstrated end-to-end design by jointly optimising all components with respect to the communications environment. In the end-to-end approach, an assumed channel model is necessary to support training of the transmitter and receiver. This limitation has motivated recent work on over-the-air training to explore disjoint training for the transmitter and receiver without an assumed channel. These methods approximate the channel through a generative adversarial model or perform gradient approximation through reinforcement learning or similar methods. However, the generative adversarial model adds complexity by requiring an additional discriminator during training, while reinforcement learning methods require multiple forward passes to approximate the gradient and are sensitive to high variance in the error signal. A third, collaborative agent-based approach relies on an echo protocol to conduct training without channel assumptions. However, the coordination between agents increases the complexity and channel usage during training. In this article, we propose a simpler approach for disjoint training in which a local receiver model approximates the remote receiver model and is used to train the local transmitter. This simplified approach performs well under several different channel conditions, has equivalent performance to end-to-end training, and is well suited to adaptation to changing channel environments.

2.
Comput Methods Programs Biomed ; 241: 107737, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37573641

RESUMO

BACKGROUND AND OBJECTIVE: Exposure to solar ultraviolet (UV) radiation can cause malignant keratinocyte cancer and eye disease. Developing a user-friendly, portable, real-time solar UV alert system especially or wearable electronic mobile devices can help reduce the exposure to UV as a key measure for personal and occupational management of the UV risks. This research aims to design artificial intelligence-inspired early warning tool tailored for short-term forecasting of UV index (UVI) integrating satellite-derived and ground-based predictors for Australian hotspots receiving high UV exposures. The study further improves the trustworthiness of the newly designed tool using an explainable artificial intelligence approach. METHODS: An enhanced joint hybrid explainable deep neural network model (called EJH-X-DNN) is constructed involving two phases of feature selection and hyperparameter tuning using Bayesian optimization. A comprehensive assessment of EJH-X- DNN is conducted with six other competing benchmarked models. The proposed model is explained locally and globally using robust model-agnostic explainable artificial intelligence frameworks such as Local Interpretable Model-Agnostic Explanations (LIME), Shapley additive explanations (SHAP), and permutation feature importance (PFI). RESULTS: The newly proposed model outperformed all benchmarked models for forecasting hourly horizons UVI, with correlation coefficients of 0.900, 0.960, 0.897, and 0.913, respectively, for Darwin, Alice Springs, Townsville, and Emerald hotspots. According to the combined local and global explainable model outcomes, the site-based results indicate that antecedent lagged memory of UVI and solar zenith angle are influential features. Predictions made by EJH-X-DNN model are strongly influenced by factors such as ozone effect, cloud conditions, and precipitation. CONCLUSION: With its superiority and skillful interpretation, the UVI prediction system reaffirms its benefits for providing real-time UV alerts to mitigate risks of skin and eye health complications, reducing healthcare costs and contributing to outdoor exposure policy.


Assuntos
Inteligência Artificial , Energia Solar , Teorema de Bayes , Austrália , Redes Neurais de Computação
3.
Int J Mol Sci ; 24(4)2023 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-36835214

RESUMO

Colloidal quantum dots (CQDs) have been proposed to obtain intermediate band (IB) materials. The IB solar cell can absorb sub-band-gap photons via an isolated IB within the gap, generating extra electron-hole pairs that increase the current without degrading the voltage, as has been demonstrated experimentally for real cells. In this paper, we model the electron hopping transport (HT) as a network embedded in space and energy so that a node represents the first excited electron state localized in a CQD while a link encodes the Miller-Abrahams (MA) hopping rate for the electron to hop from one node (=state) to another, forming an "electron-HT network". Similarly, we model the hole-HT system as a network so that a node encodes the first hole state localized in a CQD while a link represents the MA hopping rate for the hole to hop between nodes, leading to a "hole-HT network". The associated network Laplacian matrices allow for studying carrier dynamics in both networks. Our simulations suggest that reducing both the carrier effective mass in the ligand and the inter-dot distance increases HT efficiency. We have found a design constraint: It is necessary for the average barrier height to be larger than the energetic disorder to not degrade intra-band absorption.

4.
Nanomaterials (Basel) ; 12(23)2022 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-36500903

RESUMO

Organic disordered semiconductors have a growing importance because of their low cost, mechanical flexibility, and multiple applications in thermoelectric devices, biosensors, and optoelectronic devices. Carrier transport consists of variable-range hopping between localized quantum states, which are disordered in both space and energy within the Gaussian disorder model. In this paper, we model an organic disordered semiconductor system as a network embedded in both space and energy so that a node represents a localized state while a link encodes the probability (or, equivalently, the Miller-Abrahams hopping rate) for carriers to hop between nodes. The associated network Laplacian matrix allows for the study of carrier dynamics using edge-centric random walks, in which links are activated by the corresponding carrier hopping rates. Our simulation work suggests that at room temperature the network exhibits a strong propensity for small-network nature, a beneficial property that in network science is related to the ease of exchanging information, particles, or energy in many different systems. However, this is not the case at low temperature. Our analysis suggests that there could be a parallelism between the well-known dependence of carrier mobility on temperature and the potential emergence of the small-world property with increasing temperature.

5.
Sci Rep ; 10(1): 7900, 2020 05 13.
Artigo em Inglês | MEDLINE | ID: mdl-32404961

RESUMO

In the Era of exponential data generation, increasing the number of paleoclimate records to improve climate field reconstructions might not always be the best strategy. By using pseudo-proxies from different model ensembles, we show how biologically-inspired artificial intelligence can be coupled with different reconstruction methods to minimize the spatial bias induced by the non-homogeneous distribution of available proxies. The results indicate that small subsets of records situated over representative locations can outperform the reconstruction skill of the full proxy network, even in more realistic pseudo-proxy experiments and observational datasets. These locations highlight the importance of high-latitude regions and major teleconnection areas to reconstruct annual global temperature fields and their responses to external forcings and internal variability. However, low frequency temperature variations such as the transition between the Medieval Climate Anomaly and the Little Ice Age are better resolved by records situated at lower latitudes. According to our idealized experiments a careful selection of proxy locations should be performed depending on the targeted time scale of the reconstructed field.

6.
Sensors (Basel) ; 18(7)2018 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-29933585

RESUMO

This paper proposes a low-profile textile-modified meander line Inverted-F Antenna (IFA) with variable width and spacing meanders, for Industrial Scientific Medical (ISM) 2.4-GHz Wireless Body Area Networks (WBAN), optimized with a novel metaheuristic algorithm. Specifically, a metaheuristic known as Coral Reefs Optimization with Substrate Layer (CRO-SL) is used to obtain an optimal antenna for sensor systems, which allows covering properly and resiliently the 2.4⁻2.45-GHz industrial scientific medical bandwidth. Flexible pad foam has been used to make the designed prototype with a 1.1-mm thickness. We have used a version of the algorithm that is able to combine different searching operators within a single population of solutions. This approach is ideal to deal with hard optimization problems, such as the design of the proposed meander line IFA. During the optimization phase with the CRO-SL, the proposed antenna has been simulated using CST Microwave Studio software, linked to the CRO-SL by means of MATLAB implementation and Visual Basic Applications (VBA) code. We fully describe the antenna design process, the adaptation of the CRO-SL approach to this problem and several practical aspects of the optimization and details on the algorithm’s performance. To validate the simulation results, we have constructed and measured two prototypes of the antenna, designed with the proposed algorithm. Several practical aspects such as sensitivity during the antenna manufacturing or the agreement between the simulated and constructed antenna are also detailed in the paper.


Assuntos
Algoritmos , Desenho de Equipamento , Têxteis , Tecnologia sem Fio/instrumentação , Heurística
7.
Opt Lett ; 31(11): 1648-50, 2006 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-16688249

RESUMO

In mask-alignment systems a reference signal is needed to align the mask with the silicon wafers. The optical reference signal is the autocorrelation of two two-dimensional (2D) codes with binary transmittance. For a long time, one-dimensional codes have been used in grating-measurement systems to obtain a reference signal. The design of this type of code has needed a great computational effort, which limits the size of the code to about 100 elements. Recently, we have applied genetic algorithms to design codes with arbitrary length. We propose the application of these algorithms to design 2D codes to generate 2D optical signals used in mask-alignment systems.

8.
Opt Lett ; 30(20): 2724-6, 2005 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-16252754

RESUMO

A new technique for the generation of optical reference signals with optimal properties is presented. In grating measurement systems a reference signal is needed to achieve an absolute measurement of the position. The optical signal is the autocorrelation of two codes with binary transmittance. For a long time, the design of this type of code has required great computational effort, which limits the size of the code to approximately 30 elements. Recently, the application of the dividing rectangles (DIRECT) algorithm has allowed the automatic design of codes up to 100 elements. Because of the binary nature of the problem and the parallel processing of the genetic algorithms, these algorithms are efficient tools for obtaining codes with particular autocorrelation properties. We design optimum zero reference codes with arbitrary length by means of a genetic algorithm enhanced with a restricted search operator.


Assuntos
Algoritmos , Aumento da Imagem/métodos , Interpretação de Imagem Assistida por Computador/métodos , Reconhecimento Automatizado de Padrão/métodos , Refratometria/métodos , Aumento da Imagem/normas , Interpretação de Imagem Assistida por Computador/normas , Armazenamento e Recuperação da Informação/métodos , Armazenamento e Recuperação da Informação/normas , Reconhecimento Automatizado de Padrão/normas , Refratometria/normas , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Processamento de Sinais Assistido por Computador , Técnica de Subtração
9.
IEEE Trans Syst Man Cybern B Cybern ; 34(6): 2343-53, 2004 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-15619934

RESUMO

This paper presents a hybrid Hopfield network-genetic algorithm (GA) approach to tackle the terminal assignment (TA) problem. TA involves determining minimum cost links to form a communications network, by connecting a given set of terminals to a given collection of concentrators. Some previous approaches provide very good results if the cost associated with assigning a single terminal to a given concentrator is known. However, there are situations in which the cost of a single assignment is not known in advance, and only the cost associated with feasible solutions can be calculated. In these situations, previous algorithms for TA based on greedy heuristics are no longer valid, or fail to get feasible solutions. Our approach involves a Hopfield neural network (HNN) which manages the problem's constraints, whereas a GA searches for high quality solutions with the minimum possible cost. We show that our algorithm is able to achieve feasible solutions to the TA in instances where the cost of a single assignment in not known in advance, improving the results obtained by previous approaches. We also show the applicability of our approach to other problems related to the TA.


Assuntos
Algoritmos , Terminais de Computador , Modelos Estatísticos , Redes Neurais de Computação , Telecomunicações , Redes de Comunicação de Computadores , Simulação por Computador
10.
IEEE Trans Syst Man Cybern B Cybern ; 34(2): 1108-16, 2004 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-15376856

RESUMO

A hybrid Hopfield network-simulated annealing algorithm (HopSA) is presented for the frequency assignment problem (FAP) in satellite communications. The goal of this NP-complete problem is minimizing the cochannel interference between satellite communication systems by rearranging the frequency assignment, for the systems can accommodate the increasing demands. The HopSA algorithm consists of a fast digital Hopfield neural network which manages the problem constraints hybridized with a simulated annealing which improves the quality of the solutions obtained. We analyze the problem and its formulation, describing and discussing the HopSA algorithm and solving a set of benchmark problems. The results obtained are compared with other existing approaches in order to show the performance of the HopSA approach.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...