Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Bioorg Med Chem Lett ; 23(22): 6172-7, 2013 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-24080461

RESUMO

Herein we report the discovery and SAR of a novel series of SARS-CoV 3CLpro inhibitors identified through the NIH Molecular Libraries Probe Production Centers Network (MLPCN). In addition to ML188, ML300 represents the second probe declared for 3CLpro from this collaborative effort. The X-ray structure of SARS-CoV 3CLpro bound with a ML300 analog highlights a unique induced-fit reorganization of the S2-S4 binding pockets leading to the first sub-micromolar noncovalent 3CLpro inhibitors retaining a single amide bond.


Assuntos
Acetamidas/química , Acetamidas/farmacologia , Antivirais/química , Antivirais/farmacologia , Síndrome Respiratória Aguda Grave/tratamento farmacológico , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave/efeitos dos fármacos , Acetamidas/síntese química , Antivirais/síntese química , Humanos , Modelos Moleculares , Síndrome Respiratória Aguda Grave/virologia , Relação Estrutura-Atividade
2.
Proc Natl Acad Sci U S A ; 110(29): 12072-7, 2013 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-23818586

RESUMO

G protein-coupled receptors play a pivotal role in many physiological signaling pathways. Mounting evidence suggests that G protein-coupled receptors, including opioid receptors, form dimers, and dimerization is necessary for receptor maturation, signaling, and trafficking. However, the physiological role of dimerization in vivo has not been well-explored because of the lack of tools to study these dimers in endogenous systems. To address this problem, we previously generated antibodies to µ-δ opioid receptor (µOR-δOR) dimers and used them to study the pharmacology and signaling by this heteromer. We also showed that the heteromer exhibits restricted distribution in the brain and that its abundance is increased in response to chronic morphine administration. Thus, the µOR-δOR heteromer represents a potentially unique target for the development of therapeutics to treat pain. Here, we report the identification of compounds targeting µOR-δOR heteromers through high-throughput screening of a small-molecule library. These compounds exhibit activity in µOR-δOR cells but not µOR or δOR cells alone. Among them, CYM51010 was found to be a µOR-δOR-biased ligand, because its activity is blocked by the µOR-δOR heteromer antibody. Notably, systemic administration of CYM51010 induced antinociceptive activity similar to morphine, and chronic administration of CYM51010 resulted in lesser antinociceptive tolerance compared with morphine. Taken together, these results suggest that CYM51010, a µOR-δOR-biased ligand, could serve as a scaffold for the development of a unique type (heteromer-biased) of drug that is more potent and without the severe side effects associated with conventional clinical opioids.


Assuntos
Analgésicos/farmacologia , Encéfalo/metabolismo , Piperidinas/farmacologia , Receptores Opioides delta/agonistas , Receptores Opioides mu/agonistas , Analgésicos/metabolismo , Análise de Variância , Animais , Anticorpos Monoclonais/metabolismo , Linhagem Celular , Dimerização , Tolerância a Medicamentos/fisiologia , Ensaios de Triagem em Larga Escala , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Piperidinas/metabolismo , Ensaio Radioligante , Receptores Opioides delta/metabolismo , Receptores Opioides mu/metabolismo , Bibliotecas de Moléculas Pequenas
3.
Beilstein J Org Chem ; 6: 742-7, 2010 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-20978615

RESUMO

We have developed a synthetic route for the preparation of a hybrid bisubstrate small molecule based on a nucleoside. A prototype compound was designed and docked into the catalytic domain of the AdSS enzyme bridging the region between the magnesium center of the protein to the nucleoside region. The synthesis involves coupling a brominated peptide fragment capable of complexing magnesium to a thiolated nucleoside to obtain the hybrid model compound.

4.
Proc Natl Acad Sci U S A ; 107(9): 4299-304, 2010 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-20154271

RESUMO

Kinases are known to regulate fundamental processes in cancer including tumor proliferation, metastasis, neovascularization, and chemoresistance. Accordingly, kinase inhibitors have been a major focus of drug development, and several kinase inhibitors are now approved for various cancer indications. Typically, kinase inhibitors are selected via high-throughput screening using catalytic kinase domains at low ATP concentration, and this process often yields ATP mimetics that lack specificity and/or function poorly in cells where ATP levels are high. Molecules targeting the allosteric site in the inactive kinase conformation (type II inhibitors) provide an alternative for developing selective inhibitors that are physiologically active. By applying a rational design approach using a constrained amino-triazole scaffold predicted to stabilize kinases in the inactive state, we generated a series of selective type II inhibitors of PDGFRbeta and B-RAF, important targets for pericyte recruitment and endothelial cell survival, respectively. These molecules were designed in silico and screened for antivascular activity in both cell-based models and a Tg(fli1-EGFP) zebrafish embryogenesis model. Dual inhibition of PDGFRbeta and B-RAF cellular signaling demonstrated synergistic antiangiogenic activity in both zebrafish and murine models of angiogenesis, and a combination of previously characterized PDGFRbeta and RAF inhibitors validated the synergy. Our lead compound was selected as an orally active molecule with favorable pharmacokinetic properties which demonstrated target inhibition in vivo leading to suppression of murine orthotopic tumors in both the kidney and pancreas.


Assuntos
Inibidores da Angiogênese/farmacologia , Carcinoma de Células Renais/patologia , Divisão Celular/efeitos dos fármacos , Neoplasias Renais/patologia , Neovascularização Patológica , Neoplasias Pancreáticas/patologia , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas B-raf/metabolismo , Receptor beta de Fator de Crescimento Derivado de Plaquetas/metabolismo , Administração Oral , Inibidores da Angiogênese/uso terapêutico , Animais , Carcinoma de Células Renais/tratamento farmacológico , Carcinoma de Células Renais/metabolismo , Neoplasias Renais/tratamento farmacológico , Neoplasias Renais/metabolismo , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/metabolismo , Inibidores de Proteínas Quinases/uso terapêutico , Receptor beta de Fator de Crescimento Derivado de Plaquetas/antagonistas & inibidores , Peixe-Zebra
5.
Nature ; 440(7082): 372-6, 2006 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-16541080

RESUMO

Fireflies communicate with each other by emitting yellow-green to yellow-orange brilliant light. The bioluminescence reaction, which uses luciferin, Mg-ATP and molecular oxygen to yield an electronically excited oxyluciferin species, is carried out by the enzyme luciferase. Visible light is emitted during relaxation of excited oxyluciferin to its ground state. The high quantum yield of the luciferin/luciferase reaction and the change in bioluminescence colour caused by subtle structural differences in luciferase have attracted much research interest. In fact, a single amino acid substitution in luciferase changes the emission colour from yellow-green to red. Although the crystal structure of luciferase from the North American firefly (Photinus pyralis) has been described, the detailed mechanism for the bioluminescence colour change is still unclear. Here we report the crystal structures of wild-type and red mutant (S286N) luciferases from the Japanese Genji-botaru (Luciola cruciata) in complex with a high-energy intermediate analogue, 5'-O-[N-(dehydroluciferyl)-sulfamoyl]adenosine (DLSA). Comparing these structures to those of the wild-type luciferase complexed with AMP plus oxyluciferin (products) reveals a significant conformational change in the wild-type enzyme but not in the red mutant. This conformational change involves movement of the hydrophobic side chain of Ile 288 towards the benzothiazole ring of DLSA. Our results indicate that the degree of molecular rigidity of the excited state of oxyluciferin, which is controlled by a transient movement of Ile 288, determines the colour of bioluminescence during the emission reaction.


Assuntos
Cor , Vaga-Lumes/enzimologia , Luciferases de Vaga-Lume/química , Luciferases de Vaga-Lume/metabolismo , Luminescência , Animais , Sítios de Ligação , Catálise , Cristalografia por Raios X , Vaga-Lumes/genética , Vaga-Lumes/metabolismo , Interações Hidrofóbicas e Hidrofílicas , Indóis/química , Indóis/metabolismo , Luciferases de Vaga-Lume/genética , Medições Luminescentes , Ácido Lisérgico/análogos & derivados , Ácido Lisérgico/química , Ácido Lisérgico/metabolismo , Modelos Moleculares , Mutação/genética , Conformação Proteica , Pirazinas/química , Pirazinas/metabolismo , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...