Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Braz Oral Res ; 38: e021, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38477807

RESUMO

The present study aimed to evaluate the influence of titanium surface nanotopography on the initial bacterial adhesion process by in vivo and in vitro study models. Titanium disks were produced and characterized according to their surface topography: machined (Ti-M), microtopography (Ti-Micro), and nanotopography (Ti-Nano). For the in vivo study, 18 subjects wore oral acrylic splints containing 2 disks from each group for 24 h (n = 36). After this period, the disks were removed from the splints and evaluated by microbial culture method, scanning electron microscopy (SEM), and qPCR for quantification of Streptococcus oralis, Actinomyces naeslundii, Fusobacterium nucleatum, as well as total bacteria. For the in vitro study, adhesion tests were performed with the species S. oralis and A. naeslundii for 24 h. Data were compared by ANOVA, with Tukey's post-test. Regarding the in vivo study, both the total aerobic and total anaerobic bacteria counts were similar among groups (p > 0.05). In qPCR, there was no difference among groups of bacteria adhered to the disks (p > 0.05), except for A. naeslundii, which was found in lower proportions in the Ti-Nano group (p < 0.05). In the SEM analysis, the groups had a similar bacterial distribution, with a predominance of cocci and few bacilli. In the in vitro study, there was no difference in the adhesion profile for S. oralis and A. naeslundii after 24 h of biofilm formation (p > 0.05). Thus, we conclude that micro- and nanotopography do not affect bacterial adhesion, considering an initial period of biofilm formation.


Assuntos
Aderência Bacteriana , Titânio , Humanos , Fusobacterium nucleatum , Microscopia Eletrônica de Varredura , Projetos de Pesquisa
2.
Braz. oral res. (Online) ; 38: e021, 2024. tab, graf
Artigo em Inglês | LILACS-Express | LILACS, BBO - Odontologia | ID: biblio-1550156

RESUMO

Abstract The present study aimed to evaluate the influence of titanium surface nanotopography on the initial bacterial adhesion process by in vivo and in vitro study models. Titanium disks were produced and characterized according to their surface topography: machined (Ti-M), microtopography (Ti-Micro), and nanotopography (Ti-Nano). For the in vivo study, 18 subjects wore oral acrylic splints containing 2 disks from each group for 24 h (n = 36). After this period, the disks were removed from the splints and evaluated by microbial culture method, scanning electron microscopy (SEM), and qPCR for quantification of Streptococcus oralis, Actinomyces naeslundii, Fusobacterium nucleatum, as well as total bacteria. For the in vitro study, adhesion tests were performed with the species S. oralis and A. naeslundii for 24 h. Data were compared by ANOVA, with Tukey's post-test. Regarding the in vivo study, both the total aerobic and total anaerobic bacteria counts were similar among groups (p > 0.05). In qPCR, there was no difference among groups of bacteria adhered to the disks (p > 0.05), except for A. naeslundii, which was found in lower proportions in the Ti-Nano group (p < 0.05). In the SEM analysis, the groups had a similar bacterial distribution, with a predominance of cocci and few bacilli. In the in vitro study, there was no difference in the adhesion profile for S. oralis and A. naeslundii after 24 h of biofilm formation (p > 0.05). Thus, we conclude that micro- and nanotopography do not affect bacterial adhesion, considering an initial period of biofilm formation.

3.
Dent Mater ; 35(6): 909-918, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30955856

RESUMO

OBJETICVE: The aim of this study was to develop a composite material with antibacterial activity using MMT loaded with clorhexidine (CHX). For that it was used a BisGMA/TEGDMA matrix and added low concentration of MMT/CHX. The aim was to evaluate the drug release capacity of MMT, and not to provide reinforcement. METHODS: Six experimental composites were made with organic matrix of BisGMA/TEGDMA in equal proportions by weight. The composites received organophlizated montmorillonite with or without CHX. The concentrations were 2,5; 5 or 10% by weight. Degree of conversion (DC) was evaluated using FTIR (peak 6165 cm-1; n=5). Specimens for flexural properties (10×2×1mm) were immediate tested (24h). Elastic modulus(E) and flexural strength (FS) was measured using the three point bending test (n=10). Inibition halo was used to test the antibacterial activity against Staphylococcus aureus, Streptococcus mutans, and Porphyromonas gingivalis (n=5 for each bacteria). The inhibition of biofilm formation (BF) was evaluated by inserting polymerized disc of composite in to a culture media colonized with Streptococcus mutans (n=10). The release of CHX was measured using ultraviolet (255nm) for 10 days (n=5). The data of degree of conversion was analysed using Kruskal-Wallis/ Mann-Whitney, and the other variables using two-way ANOVA/Tukey, always considering a global level of significance of 5%. RESULTS: DC ranged from 71% to 74%. E ranged from 5.7 to 8.1GPa. FS ranged from 61.4 to 74.7MPa. There were no statistical differences among the groups for all the variables. For the three bacteria tested the composites with CHX loaded presented inhibition of growth for all concentration, except for 2,5% that did not inihibited the growth of P. gingivalis. BF was lower for the groups with 10% MMT/CHX, all groups presented BF, even those without CHX loaded. All concentrations presented release off CHX during all the 28 days analyzed. CONCLUSIONS: Within the limitation of this study it can be concluded that: all concentrations tested presented release of CHX and reduced BF. All concentration presented antibacterial activity for the three bacteria tested, except for 2,5% that did not inhibit the growth of P. gingivalis. The presence of MMT with CHX loaded did not interfere in the properties evaluated.


Assuntos
Clorexidina , Resinas Compostas , Antibacterianos , Materiais Dentários , Teste de Materiais , Streptococcus mutans
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...