Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Pharmacy (Basel) ; 10(1)2022 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-35202067

RESUMO

The emerging landscape of nanomedicine includes a wide variety of active pharmaceutical ingredients and drug formulations. Their design provides nanomedicines with unique features leading to improved pharmacokinetics and pharmacodynamics. They are manufactured using conventional or biotechnological manufacturing processes. Their physical characteristics are vastly different from traditional small-molecule drugs. Pharmacists are important members of the multi-disciplinary team of scientists involved in their development and clinical application. Consequently, their training should lead to an understanding of the complexities associated with the production and evaluation of nanomedicines. Therefore, student pharmacists, post-doctoral researchers, and trainees should be given more exposure to this rapidly evolving class of therapeutics. This commentary will provide an overview of nanomedicine education within the selection of pharmacy programs globally, discuss the current regulatory challenges, and describe different approaches to incorporate nanomedicine science in pharmacy programs around the world.

2.
Molecules ; 26(8)2021 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-33920728

RESUMO

The aim of the present study was to assess the short-term effects of Thymoquinone (TQ) on oxidative stress, glycaemic control, and renal functions in diabetic rats. DM was induced in groups II and III with a single dose of streptozotocin (STZ), while group I received no medication (control). The rats in groups I and II were then given distilled water, while the rats in group III were given TQ at a dose of 50 mg/kg body weight/day for 4 weeks. Lipid peroxidase, nitric oxide (NO), total antioxidant capacity (TAC), glycated haemoglobin (HbA1c), lipid profiles, and renal function were assessed. Moreover, the renal tissues were used for histopathological examination. STZ increased the levels of HbA1c, lipid peroxidase, NO, and creatinine in STZ-induced diabetic rats in comparison to control rats. TAC was lower in STZ-induced diabetic rats than in the control group. Furthermore, rats treated with TQ exhibited significantly lower levels of HbA1c, lipid peroxidase, and NO than did untreated diabetic rats. TAC was higher in diabetic rats treated with TQ than in untreated diabetic rats. The histopathological results showed that treatment with TQ greatly attenuated the effect of STZ-induced diabetic nephropathy. TQ effectively adjusts glycaemic control and reduces oxidative stress in STZ-induced diabetic rats without significant damaging effects on the renal function.


Assuntos
Benzoquinonas/farmacologia , Glicemia/efeitos dos fármacos , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Tipo 2/tratamento farmacológico , Nefropatias Diabéticas/tratamento farmacológico , Animais , Antioxidantes/farmacologia , Diabetes Mellitus Experimental/sangue , Diabetes Mellitus Experimental/patologia , Diabetes Mellitus Tipo 2/sangue , Diabetes Mellitus Tipo 2/patologia , Nefropatias Diabéticas/sangue , Nefropatias Diabéticas/patologia , Modelos Animais de Doenças , Humanos , Hipoglicemia/sangue , Hipoglicemia/tratamento farmacológico , Hipoglicemia/patologia , Rim/efeitos dos fármacos , Rim/patologia , Estresse Oxidativo/efeitos dos fármacos , Ratos
3.
Pharmaceutics ; 13(4)2021 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-33801614

RESUMO

The development of vaccines is one of the most significant medical accomplishments which has helped to eradicate a large number of diseases. It has undergone an evolutionary process from live attenuated pathogen vaccine to killed whole organisms or inactivated toxins (toxoids), each of them having its own advantages and disadvantages. The crucial parameters in vaccination are the generation of memory response and protection against infection, while an important aspect is the effective delivery of antigen in an intelligent manner to evoke a robust immune response. In this regard, nanotechnology is greatly contributing to developing efficient vaccine adjuvants and delivery systems. These can protect the encapsulated antigen from the host's in-vivo environment and releasing it in a sustained manner to induce a long-lasting immunostimulatory effect. In view of this, the present review article summarizes nanoscale-based adjuvants and delivery vehicles such as viral vectors, virus-like particles and virosomes; non-viral vectors namely nanoemulsions, lipid nanocarriers, biodegradable and non-degradable nanoparticles, calcium phosphate nanoparticles, colloidally stable nanoparticles, proteosomes; and pattern recognition receptors covering c-type lectin receptors and toll-like receptors.

4.
Pharmaceuticals (Basel) ; 14(2)2021 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-33670611

RESUMO

In this study, PGA-co-PDL nanoparticles (NPs) encapsulating model antigen, bovine serum albumin (BSA), were prepared via double emulsion solvent evaporation. In addition, chitosan hydrochloride (CHL) was incorporated into the external phase of the emulsion solvent method, which resulted in surface adsorption onto the NPs to form hybrid cationic CHL NPs. The BSA encapsulated CHL NPs were encompassed into nanocomposite microcarriers (NCMPs) composed of l-leucine to produce CHL NPs/NCMPs via spray drying. The CHL NPs/NCMPs were investigated for in vitro aerosolization, release study, cell viability and uptake, and stability of protein structure. Hybrid cationic CHL NPs (CHL: 10 mg/mL) of particle size (480.2 ± 32.2 nm), charge (+14.2 ± 0.72 mV), and BSA loading (7.28 ± 1.3 µg/mg) were produced. The adsorption pattern was determined to follow the Freundlich model. Aerosolization of CHL NPs/NCMPs indicated fine particle fraction (FPF: 46.79 ± 11.21%) and mass median aerodynamic diameter (MMAD: 1.49 ± 0.29 µm). The BSA α-helical structure was maintained, after release from the CHL NPs/NCMPs, as indicated by circular dichroism. Furthermore, dendritic cells (DCs) and A549 cells showed good viability (≥70% at 2.5 mg/mL after 4-24 h exposure, respectively). Confocal microscopy and flow cytometry data showed hybrid cationic CHL NPs were successfully taken up by DCs within 1 h of incubation. The upregulation of CD40, CD86, and MHC-II cell surface markers indicated that the DCs were successfully activated by the hybrid cationic CHL NPs. These results suggest that the CHL NPs/NCMPs technology platform could potentially be used for the delivery of proteins to the lungs for immunostimulatory applications such as vaccines.

5.
Nanotoxicology ; 14(1): 21-58, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31502904

RESUMO

Nanoparticle(NP)-based materials have breakthrough applications in many fields of life, such as in engineering, communications and textiles industries; food and bioenvironmental applications; medicines and cosmetics, etc. Biomedical applications of NPs are very active areas of research with successful translation to pharmaceutical and clinical uses overcoming both pharmaceutical and clinical challenges. Although the attractiveness and enhanced applications of these NPs stem from their exceptional properties at the nanoscale size, i.e. 1-1000 nm, they exhibit completely different physicochemical profiles and, subsequently, toxicological profiles from their parent bulk materials. Hence, the clinical evaluation and toxicological assessment of NPs interactions within biological systems are continuously evolving to ensure their safety at the nanoscale. The pulmonary system is one of the primary routes of exposure to airborne NPs either intentionally, via aerosolized nanomedicines targeting pulmonary pathologies such as cancer or asthma, or unintentionally, via natural NPs and anthropogenic (man-made) NPs. This review presents the state-of-the-art, contemporary challenges, and knowledge gaps in the toxicological assessment of NPs interactions with the pulmonary system. It highlights the main mechanisms of NP toxicity, factors influencing their toxicity, the different toxicological assessment methods and their drawbacks, and the recent NP regulatory guidelines based on literature collected from the research pool of NPs interactions with lung cell lines, in vivo inhalation studies, and clinical trials.


Assuntos
Poluentes Atmosféricos/toxicidade , Nanopartículas/toxicidade , Sistema Respiratório/efeitos dos fármacos , Aerossóis , Animais , Humanos , Exposição por Inalação , Pulmão/efeitos dos fármacos , Nanomedicina
6.
Int J Pharm ; 569: 118524, 2019 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-31319144

RESUMO

The treatment and management of COPD by inhalation to the lungs has emerged as an attractive alternative route to oral dosing due to higher concentrations of the drug being administered to site of action. In this study, Nanocomposite Microparticles (NCMPs) of microRNA (miR-146a) containing PGA-co-PDL nanoparticles (NPs) for dry powder inhalation were formulated using l-leucine and mannitol. The spray-drying (Buchi B290) process was optimised and used to incorporate NPs into NCMPs using mix of l-leucine and mannitol excipients in different ratios (F1; 100:0% w/w, F2; 75:25% w/w, F3; 50:50% w/w, F4; 25:75% w/w, F5; 0:100% w/w) to investigate yield %, moisture content, aerosolisation performance and miR-146a biological activity. The optimum condition was performed at feed rate 0.5 ml/min, aspirator rate 28 m3/h, atomizing air flow rate 480 L/h, and inlet drying temperature 70 °C which produced highest yield percentage and closest recovered NPs size to original prior spray-drying. The optimum formulation (F4) had a high yield (86.0 ±â€¯15.01%), recovered NPs size after spray-drying 409.7 ±â€¯10.05 nm (initial NPs size 244.8 ±â€¯4.40 nm) and low moisture content (2.02 ±â€¯0.03%). The aerosolisation performance showed high Fine Particle Fraction (FPF) 51.33 ±â€¯2.9%, Emitted Dose (ED) of 81.81 ±â€¯3.0%, and the mass median aerodynamic diameter (MMAD) was ≤5 µm suggesting a deposition in the respirable region of the lungs. The biological activity of miR-146a was preserved after spray-drying process and miR-146a loaded NCMPs produced target genes IRAK1 and TRAF6 silencing. These results indicate the optimal process parameters for the preparation of NCMPs of miR-146a-containing PGA-co-PDL NPs suitable for inhalation in the treatment and management of COPD.


Assuntos
Portadores de Fármacos/administração & dosagem , MicroRNAs/administração & dosagem , Nanocompostos/administração & dosagem , Poliésteres/administração & dosagem , Células A549 , Administração por Inalação , Aerossóis , Portadores de Fármacos/química , Excipientes/administração & dosagem , Excipientes/química , Humanos , Quinases Associadas a Receptores de Interleucina-1/genética , Leucina/administração & dosagem , Leucina/química , Manitol/administração & dosagem , Manitol/química , MicroRNAs/química , Nanocompostos/química , Poliésteres/química , Pós , Doença Pulmonar Obstrutiva Crônica/tratamento farmacológico
7.
Daru ; 27(1): 433-449, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31115871

RESUMO

The application of natural products to treat various diseases, such as cancer, has been an important area of research for many years. Several phytochemicals have demonstrated anticarcinogenic activity to prevent or reduce the progression of cancer by modulating various cellular mechanisms. However, poor bioavailability has hindered clinical success and the incorporation of these drugs into efficient drug delivery systems would be beneficial. For lung cancer, local delivery via the pulmonary route would also be more effective. In this article, recent in vitro scientific literature on phenolic compounds with anticancer activity towards lung cancer cell lines is reviewed and nanoparticulate delivery is mentioned as a possible solution to the problem of bioavailability. The first part of the review will explore the different classes of natural phenolic compounds and discuss recent reports on their activity on lung cancer cells. Then, the problem of the poor bioavailability of phenolic compounds will be explored, followed by a summary of recent advances in improving the efficacy of these phenolic compounds using nanoparticulate drug delivery systems. Graphical abstract The rationale for direct delivery of phenolic compounds loaded in microparticles to the lungs.


Assuntos
Neoplasias Pulmonares/tratamento farmacológico , Fenóis/farmacocinética , Compostos Fitoquímicos/farmacocinética , Disponibilidade Biológica , Linhagem Celular Tumoral , Sistemas de Liberação de Medicamentos , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Fenóis/química , Compostos Fitoquímicos/química
8.
Eur J Pharm Biopharm ; 136: 1-8, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30615927

RESUMO

RNA interference (RNAi) based therapeutics are considered an endogenous mechanism for modulating gene expression. In addition, microRNAs (miRNAs) may be tractable targets for the treatment of Chronic Obstructive Pulmonary Disease (COPD). In this study miR146a was adsorbed onto poly (glycerol adipate-co-ω-pentadecalactone), PGA-co-PDL, nanoparticles (NPs) to reduce target gene IRAK1 expression. NPs were prepared using an oil-in-water single emulsion solvent evaporation method incorporating cationic lipid dioleoyltrimethylammoniumpropane (DOTAP). This resulted in NPs of 244.80 ±â€¯4.40 nm at 15% DOTAP concentration, zeta potential (ZP) of +14.8 ±â€¯0.26 mV and miR-146a (40 µg/ml) maximum adsorption onto 15% DOTAP NPs was 36.25 ±â€¯0.35 µg per 10 mg NP following 24 h incubation. Using the MTT assay, it was observed that over 75% at 0.312 mg/ml of A549 cells remained viable after 18 h exposure to cationic NPs at a concentration of 1.25 mg/ml. Furthermore, the in vitro release profile of miR-146a from loaded NPs showed a continuous release up to 77% after 24 h. Internalization of miR-146a loaded cationic NPs was observed in A549 cell lines using fluorescence and confocal microscopy. The miR146a delivered as miR-146a-NPs had a dose dependent effect of highest NPs concentrations 0.321 and 0.625 mg/ml and reduced target gene IRAK1 expression to 40%. In addition, IL-8 promoter reporter output (GFP) was dampened by miR-146a-NPs. In conclusion, miR-146a was successfully adsorbed onto PGA-co-PDL-DOTAP NPs and the miR-146a retained biological activity. Therefore, these results demonstrate the potential of PGA-co-PDL NPs as a delivery system for miR-146a to treat COPD.


Assuntos
Sistemas de Liberação de Medicamentos/métodos , Ácidos Graxos Monoinsaturados/administração & dosagem , MicroRNAs/administração & dosagem , Nanopartículas/administração & dosagem , Poliésteres/administração & dosagem , Doença Pulmonar Obstrutiva Crônica , Compostos de Amônio Quaternário/administração & dosagem , Células A549 , Relação Dose-Resposta a Droga , Ácidos Graxos Monoinsaturados/metabolismo , Humanos , MicroRNAs/metabolismo , Nanopartículas/metabolismo , Tamanho da Partícula , Poliésteres/metabolismo , Polímeros/administração & dosagem , Polímeros/metabolismo , Doença Pulmonar Obstrutiva Crônica/tratamento farmacológico , Doença Pulmonar Obstrutiva Crônica/metabolismo , Compostos de Amônio Quaternário/metabolismo
9.
PLoS One ; 13(1): e0191692, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29360883

RESUMO

Burden of pneumonia caused by Streptococcus pneumoniae remains high despite the availability of conjugate vaccines. Mucosal immunization targeting the lungs is an attractive alternative for the induction of local immune responses to improve protection against pneumonia. Our group had previously described the development of poly(glycerol adipate-co-ω-pentadecalactone) (PGA-co-PDL) polymeric nanoparticles (NPs) adsorbed with Pneumococcal surface protein A from clade 4 (PspA4Pro) within L-leucine microcarriers (nanocomposite microparticles-NCMPs) for mucosal delivery targeting the lungs (NP/NCMP PspA4Pro). NP/NCMP PspA4Pro was now used for immunization of mice. Inoculation of this formulation induced anti-PspA4Pro IgG antibodies in serum and lungs. Analysis of binding of serum IgG to intact bacteria showed efficient binding to bacteria expressing PspA from clades 3, 4 and 5 (family 2), but no binding to bacteria expressing PspA from clades 1 and 2 (family 1) was observed. Both mucosal immunization with NP/NCMP PspA4Pro and subcutaneous injection of the protein elicited partial protection against intranasal lethal pneumococcal challenge with a serotype 3 strain expressing PspA from clade 5 (PspA5). Although similar survival levels were observed for mucosal immunization with NP/NCMP PspA4Pro and subcutaneous immunization with purified protein, NP/NCMP PspA4Pro induced earlier control of the infection. Conversely, neither immunization with NP/NCMP PspA4Pro nor subcutaneous immunization with purified protein reduced bacterial burden in the lungs after challenge with a serotype 19F strain expressing PspA from clade 1 (PspA1). Mucosal immunization with NP/NCMP PspA4Pro targeting the lungs is thus able to induce local and systemic antibodies, conferring protection only against a strain expressing PspA from the homologous family 2.


Assuntos
Proteínas de Bactérias/administração & dosagem , Imunidade nas Mucosas , Nanopartículas , Pneumonia Bacteriana/prevenção & controle , Adsorção , Animais , Líquido da Lavagem Broncoalveolar , Ensaio de Imunoadsorção Enzimática , Feminino , Imunofenotipagem , Camundongos , Camundongos Endogâmicos BALB C , Pneumonia Bacteriana/sangue
10.
PloS One, v. 13, n. 1, e0191692, jan. 2018
Artigo em Inglês | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-4117

RESUMO

Burden of pneumonia caused by Streptococcus pneumoniae remains high despite the availability of conjugate vaccines. Mucosal immunization targeting the lungs is an attractive alternative for the induction of local immune responses to improve protection against pneumonia. Our group had previously described the development of poly(glycerol adipate-co-ωpentadecalactone) (PGA-co-PDL) polymeric nanoparticles (NPs) adsorbed with Pneumococcal surface protein A from clade 4 (PspA4Pro) within L-leucine microcarriers (nanocomposite microparticles—NCMPs) for mucosal delivery targeting the lungs (NP/NCMP PspA4Pro). NP/NCMP PspA4Pro was now used for immunization of mice. Inoculation of this formulation induced anti-PspA4Pro IgG antibodies in serum and lungs. Analysis of binding of serum IgG to intact bacteria showed efficient binding to bacteria expressing PspA from clades 3, 4 and 5 (family 2), but no binding to bacteria expressing PspA from clades 1 and 2 (family 1) was observed. Both mucosal immunization with NP/NCMP PspA4Pro and subcutaneous injection of the protein elicited partial protection against intranasal lethal pneumococcal challenge with a serotype 3 strain expressing PspA from clade 5 (PspA5). Although similar survival levels were observed for mucosal immunization with NP/NCMP PspA4Pro and subcutaneous immunization with purified protein, NP/NCMP PspA4Pro induced earlier control of the infection. Conversely, neither immunization with NP/NCMP PspA4Pro nor subcutaneous immunization with purified protein reduced bacterial burden in the lungs after challenge with a serotype 19F strain expressing PspA from clade 1 (PspA1). Mucosal immunization with NP/NCMP PspA4Pro targeting the lungs is thus able to induce local and systemic antibodies, conferring protection only against a strain expressing PspA from the homologous family 2.

11.
PLoS One, v. 13, n. 1, e0191692, jan. 2018
Artigo em Inglês | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-2430

RESUMO

Burden of pneumonia caused by Streptococcus pneumoniae remains high despite the availability of conjugate vaccines. Mucosal immunization targeting the lungs is an attractive alternative for the induction of local immune responses to improve protection against pneumonia. Our group had previously described the development of poly(glycerol adipate-co-omega-pentadecalactone) (PGA-co-PDL) polymeric nanoparticles (NPs) adsorbed with Pneumococcal surface protein A from clade 4 (PspA4Pro) within L-leucine microcarriers (nanocomposite microparticles-NCMPs) for mucosal delivery targeting the lungs (NP/NCMP PspA4Pro). NP/NCMP PspA4Pro was now used for immunization of mice. Inoculation of this formulation induced anti-PspA4Pro IgG antibodies in serum and lungs. Analysis of binding of serum IgG to intact bacteria showed efficient binding to bacteria expressing PspA from clades 3, 4 and 5 (family 2), but no binding to bacteria expressing PspA from clades 1 and 2 (family 1) was observed. Both mucosal immunization with NP/NCMP PspA4Pro and subcutaneous injection of the protein elicited partial protection against intranasal lethal pneumococcal challenge with a serotype 3 strain expressing PspA from clade 5 (PspA5). Although similar survival levels were observed for mucosal immunization with NP/NCMP PspA4Pro and subcutaneous immunization with purified protein, NP/NCMP PspA4Pro induced earlier control of the infection. Conversely, neither immunization with NP/NCMP PspA4Pro nor subcutaneous immunization with purified protein reduced bacterial burden in the lungs after challenge with a serotype 19F strain expressing PspA from clade 1 (PspA1). Mucosal immunization with NP/NCMP PspA4Pro targeting the lungs is thus able to induce local and systemic antibodies, conferring protection only against a strain expressing PspA from the homologous family 2.

12.
PLoS One ; 13(1): e0191692, 2018.
Artigo em Inglês | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: but-ib14956

RESUMO

Burden of pneumonia caused by Streptococcus pneumoniae remains high despite the availability of conjugate vaccines. Mucosal immunization targeting the lungs is an attractive alternative for the induction of local immune responses to improve protection against pneumonia. Our group had previously described the development of poly(glycerol adipate-co-omega-pentadecalactone) (PGA-co-PDL) polymeric nanoparticles (NPs) adsorbed with Pneumococcal surface protein A from clade 4 (PspA4Pro) within L-leucine microcarriers (nanocomposite microparticles-NCMPs) for mucosal delivery targeting the lungs (NP/NCMP PspA4Pro). NP/NCMP PspA4Pro was now used for immunization of mice. Inoculation of this formulation induced anti-PspA4Pro IgG antibodies in serum and lungs. Analysis of binding of serum IgG to intact bacteria showed efficient binding to bacteria expressing PspA from clades 3, 4 and 5 (family 2), but no binding to bacteria expressing PspA from clades 1 and 2 (family 1) was observed. Both mucosal immunization with NP/NCMP PspA4Pro and subcutaneous injection of the protein elicited partial protection against intranasal lethal pneumococcal challenge with a serotype 3 strain expressing PspA from clade 5 (PspA5). Although similar survival levels were observed for mucosal immunization with NP/NCMP PspA4Pro and subcutaneous immunization with purified protein, NP/NCMP PspA4Pro induced earlier control of the infection. Conversely, neither immunization with NP/NCMP PspA4Pro nor subcutaneous immunization with purified protein reduced bacterial burden in the lungs after challenge with a serotype 19F strain expressing PspA from clade 1 (PspA1). Mucosal immunization with NP/NCMP PspA4Pro targeting the lungs is thus able to induce local and systemic antibodies, conferring protection only against a strain expressing PspA from the homologous family 2.

13.
Int J Pharm ; 531(1): 80-89, 2017 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-28818458

RESUMO

The aim of this work was to investigate the efficient targeting and delivery of indometacin (IND), as a model anti-inflammatory drug to the colon for treatment of inflammatory bowel disease. We prepared fast disintegrating tablets (FDT) containing IND encapsulated within poly(glycerol-adipate-co-É·-pentadecalactone), PGA-co-PDL, microparticles and coated with Eudragit L100-55 at different ratios (1:1.5, 1:1, 1:0.5). Microparticles encapsulated with IND were prepared using an o/w single emulsion solvent evaporation technique and coated with Eudragit L-100-55 via spray drying. The produced coated microparticles (PGA-co-PDL-IND/Eudragit) were formulated into optimised FTD using a single station press. The loading, in vitro release, permeability and transport of IND from PGA-co-PDL-IND/Eudragit microparticles was studied in Caco-2 cell lines. IND was efficiently encapsulated (570.15±4.2µg/mg) within the PGA-co-PDL microparticles. In vitro release of PGA-co-PDL-IND/Eudragit microparticles (1:1.5) showed significantly (p<0.05, ANOVA/Tukey) lower release of IND 13.70±1.6 and 56.46±3.8% compared with 1:1 (89.61±2.5, 80.13±2.6%) and 1:0.5 (39.46±0.9 & 43.38±3.12) after 3 and 43h at pH 5.5 and 6.8, respectively. The permeability and transport studies indicated IND released from PGA-co-PDL-IND/Eudragit microparticles had a lower permeability coefficient of 13.95±0.68×10-6cm/s compared to free IND 23.06±3.56×10-6cm/s. These results indicate the possibility of targeting anti-inflammatory drugs to the colon using FDTs containing microparticles coated with Eudragit.


Assuntos
Resinas Acrílicas/química , Sistemas de Liberação de Medicamentos , Indometacina/administração & dosagem , Poliésteres/química , Células CACO-2 , Humanos , Concentração de Íons de Hidrogênio , Ácidos Polimetacrílicos , Comprimidos
14.
J Aerosol Med Pulm Drug Deliv ; 30(4): 274-288, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28282259

RESUMO

BACKGROUND: Respiratory diseases are mainly derived from acute and chronic inflammation of the alveoli and bronchi. The pathophysiological mechanisms of pulmonary inflammation mainly arise from oxidative damage that could ultimately lead to acute lung injury. Apigenin (Api) is a natural polyphenol with prominent antioxidant and anti-inflammatory properties in the lung. Inhalable formulations that consist of nanoparticles (NPs) have several advantages over other administration routes, and therefore, this study investigated the application of apigenin-loaded bovine serum albumin nanoparticles (BSA-Api-NPs) for pulmonary delivery. METHODS: Dry powder formulations of BSA-Api-NPs were prepared by spray drying and characterized by laser diffraction particle sizing, scanning electron microscopy, differential scanning calorimetry, and powder X-ray diffraction. The influence of dispersibility enhancers (lactose monohydrate and l-leucine) on the in vitro aerosol deposition using a next-generation impactor was investigated in comparison to excipient-free formulation. The dissolution of Api was determined in simulated lung fluid by using the Franz cell apparatus. The antioxidant activity was determined by 2,2-diphenyl-1-picrylhydrazyl (DPPH⋅) free radical scavenging assay. RESULTS: The encapsulation efficiency and the drug loading were measured to be 82.61% ± 4.56% and 7.51% ± 0.415%. The optimized spray drying conditions were suitable to produce particles with low residual moisture content. The spray-dried BSA-Api-NPs possessed good aerodynamic properties due to small and wrinkled particles with low mass median aerodynamic diameter, high emitted dose, and fine particle fraction. The aerodynamic properties were enhanced by leucine and decreased by lactose, however, the dissolution was reversely affected. The DPPH⋅ assay confirmed that the antioxidant activity of encapsulated Api was preserved. CONCLUSION: This study provides evidence to support that albumin nanoparticles are suitable carriers of Api and the use of traditional or novel excipients should be taken into consideration. The developed BSA-Api-NPs are a novel delivery system against lung injury with potential antioxidant activity.


Assuntos
Antioxidantes/administração & dosagem , Apigenina/administração & dosagem , Sistemas de Liberação de Medicamentos , Nanopartículas , Administração por Inalação , Aerossóis , Albuminas/química , Antioxidantes/farmacocinética , Antioxidantes/farmacologia , Apigenina/farmacocinética , Apigenina/farmacologia , Varredura Diferencial de Calorimetria , Química Farmacêutica/métodos , Portadores de Fármacos/química , Composição de Medicamentos/métodos , Liberação Controlada de Fármacos , Excipientes/química , Sequestradores de Radicais Livres/administração & dosagem , Sequestradores de Radicais Livres/farmacocinética , Sequestradores de Radicais Livres/farmacologia , Pulmão/metabolismo , Microscopia Eletrônica de Varredura , Tamanho da Partícula , Difração de Raios X
15.
Drug Dev Ind Pharm ; 42(11): 1782-91, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27032509

RESUMO

Targeting of G-protein coupled receptors (GPCRs) like somatostatin-14 (SST-14) could have a potential interest in delivery of anti-cancer agents to tumor cells. Attachment of SST to different nano-carriers e.g. polymeric nanoparticles is limited due to the difficulty of interaction between SST itself and those nano-carriers. Furthermore, the instability problems associated with the final formulation. Attaching of SST to gold nanoparticles (AuNPs) using the positive and negative charge of SST and citrate-AuNPs could be considered a new technique to get stable non-aggregated AuNPs coated with SST. Different analyses techniques have been performed to proof the principle of coating between AuNPs and SST. Furthermore, cellular uptake studies on HCC-1806, HELA and U-87 cell lines has been investigated to show the ability of AuNPs coated SST to enter the cells via SST receptors. Dynamic light scattering (DLS) indicated a successful coating of SST on the MUA-AuNPs surface. Furthermore, all the performed analysis including DLS, SDS-PAGE and UV-VIS absorption spectra indicated a successful coating of AuNPs with SST. Cellular uptake studies on HCC-1806, HELA and U-87 cell lines showed that the number of AuNPs-SST per cell is signiflcantly higher compared to citrate-AuNPs when quantified using inductively coupled plasma spectroscopy. Moreover, the binding of AuNPs-SST to cells can be suppressed by addition of antagonist, indicating that the binding of AuNPs-SST to cells is due to receptor-specific binding. In conclusion, AuNPs could be attached to SST via adsorption to get stable AuNPs coated SST. This new formulation has a potential to target SST receptors localized in many normal and tumor cells.


Assuntos
Citratos/química , Ouro/química , Nanopartículas Metálicas/química , Receptores de Somatostatina/administração & dosagem , Receptores de Somatostatina/química , Somatostatina/administração & dosagem , Somatostatina/química , Adsorção , Linhagem Celular Tumoral , Sobrevivência Celular , Humanos , Microscopia Eletrônica de Transmissão , Receptores de Somatostatina/metabolismo , Somatostatina/metabolismo
16.
Curr Pharm Des ; 22(17): 2577-98, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26983671

RESUMO

Pulmonary infections may be fatal especially in immunocompromised patients and patients with underlying pulmonary dysfunction, such as those with cystic fibrosis, chronic obstructive pulmonary disorder, etc. According to the WHO, lower respiratory tract infections ranked first amongst the leading causes of death in 2012, and tuberculosis was included in the top 10 causes of death in low income countries, placing a considerable strain on their economies and healthcare systems. Eradication of lower respiratory infections is arduous, leading to high healthcare costs and requiring higher doses of antibiotics to reach optimal concentrations at the site of pulmonary infection for protracted periods. Hence direct inhalation to the respiratory epithelium has been investigated extensively in the past decade, and seems to be an attractive approach to eradicate and hence overcome this widespread problem. Moreover, engineering inhalation formulations wherein the antibiotics are encapsulated within nanoscale carriers could serve to overcome many of the limitations faced by conventional antibiotics, like difficulty in treating intracellular pathogens such as mycobacteria spp. and salmonella spp., biofilmassociated pathogens like Pseudomonas aeruginosa and Staphylococcus aureus, passage through the sputum associated with disorders like cystic fibrosis and chronic obstructive pulmonary disorder, systemic side effects following oral/parenteral delivery and inadequate concentrations of antibiotic at the site of infection leading to resistance. Encapsulation of antibiotics in nanocarriers may help in providing a protective environment to combat antibiotic degradation, confer controlled-release properties, hence reducing dosing frequency, and may increase uptake via specific and non-specific targeting modalities. Hence nanotechnology combined with direct administration to the airways using commercially available delivery devices, is a highly attractive formulation strategy to eradicate microorganisms from the lower respiratory tract, which might otherwise present opportunities for multi-drug resistance.


Assuntos
Antibacterianos/farmacocinética , Antibacterianos/uso terapêutico , Sistemas de Liberação de Medicamentos , Pulmão/metabolismo , Nanomedicina , Infecções Respiratórias/tratamento farmacológico , Infecções Respiratórias/metabolismo , Administração por Inalação , Antibacterianos/administração & dosagem , Antibacterianos/farmacologia , Doença Crônica , Humanos , Pulmão/efeitos dos fármacos , Pulmão/microbiologia , Pseudomonas aeruginosa/efeitos dos fármacos , Infecções Respiratórias/microbiologia , Staphylococcus aureus/efeitos dos fármacos
17.
J Pharm Sci ; 104(12): 4386-4398, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26505151

RESUMO

In this study, Taguchi design was used to determine optimal parameters for the preparation of bovine serum albumin (BSA)-loaded nanoparticles (NPs) using a biodegradable polymer poly(glycerol adipate-co-ω-pentadecalactone) (PGA-co-PDL). NPs were prepared, using BSA as a model protein, by the double emulsion evaporation process followed by spray-drying from leucine to form nanocomposite microparticles (NCMPs). The effect of various parameters on NP size and BSA loading were investigated and dendritic cell (DC) uptake and toxicity. NCMPs were examined for their morphology, yield, aerosolisation, in vitro release behaviour and BSA structure. NP size was mainly affected by the polymer mass used and a small particle size ≤500 nm was achieved. High BSA (43.67 ± 2.3 µg/mg) loading was influenced by BSA concentration. The spray-drying process produced NCMPs (50% yield) with a porous corrugated surface, aerodynamic diameter 1.46 ± 141 µm, fine particle dose 45.0 ± 4.7 µg and fine particle fraction 78.57 ± 0.1%, and a cumulative BSA release of 38.77 ± 3.0% after 48 h. The primary and secondary structures were maintained as shown by sodium dodecyl sulphate poly (acrylamide) gel electrophoresis and circular dichroism. Effective uptake of NPs was seen in DCs with >85% cell viability at 5 mg/mL concentration after 4 h. These results indicate the optimal process parameters for the preparation of protein-loaded PGA-co-PDL NCMPs suitable for inhalation.


Assuntos
Portadores de Fármacos/química , Pulmão/metabolismo , Nanocompostos/administração & dosagem , Nanocompostos/química , Nanopartículas/química , Proteínas/administração & dosagem , Proteínas/química , Administração por Inalação , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Dicroísmo Circular/métodos , Células Dendríticas/metabolismo , Portadores de Fármacos/administração & dosagem , Eletroforese em Gel de Poliacrilamida/métodos , Emulsões/química , Humanos , Microesferas , Nanopartículas/administração & dosagem , Tamanho da Partícula , Poliésteres/química , Polímeros/química , Soroalbumina Bovina/administração & dosagem , Soroalbumina Bovina/química , Propriedades de Superfície
18.
Int J Pharm ; 495(2): 903-12, 2015 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-26387622

RESUMO

Pneumonia, caused by Streptococcus pneumoniae, mainly affects the immunocompromised, the very young and the old, and remains one of the leading causes of death. A steady rise in disease numbers from non-vaccine serotypes necessitates a new vaccine formulation that ideally has better antigen stability and integrity, does not require cold-chain and can be delivered non-invasively. In this study, a dry powder vaccine containing an important antigen of S. pneumoniae, pneumococcal surface protein A (PspA) that has shown cross-reactivity amongst serotypes to be delivered via the pulmonary route has been formulated. The formulation contains the antigen PspA adsorbed onto the surface of polymeric nanoparticles encapsulated in L-leucine microparticles that can be loaded into capsules and delivered via an inhaler. We have successfully synthesized particles of ∼150 nm and achieved ∼20 µg of PspA adsorption per mg of NPs. In addition, the spray-dried powders displayed a FPF of 74.31±1.32% and MMAD of 1.70±0.03 µm suggesting a broncho-alveolar lung deposition facilitating the uptake of the nanoparticles by dendritic cells. Also, the PspA released from the dry powders maintained antigen stability (SDS-PAGE), integrity (Circular dichroism) and activity (lactoferrin binding assay). Moreover, the released antigen also maintained its antigenicity as determined by ELISA.


Assuntos
Antígenos de Bactérias/administração & dosagem , Proteínas de Bactérias/administração & dosagem , Proteínas de Bactérias/imunologia , Vacinas Bacterianas/administração & dosagem , Pulmão/metabolismo , Nanopartículas/administração & dosagem , Pós/administração & dosagem , Administração por Inalação , Adsorção , Antígenos de Bactérias/imunologia , Vacinas Bacterianas/imunologia , Sobrevivência Celular , Química Farmacêutica/métodos , Células Dendríticas/imunologia , Liberação Controlada de Fármacos , Estabilidade de Medicamentos , Humanos , Lactoferrina/imunologia , Pulmão/citologia , Nanopartículas/efeitos adversos , Tamanho da Partícula
19.
Int J Pharm ; 492(1-2): 213-22, 2015 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-26169146

RESUMO

Pulmonary delivery of macromolecules has been the focus of attention as an alternate route of delivery with benefits such as; large surface area, thin alveolar epithelium, rapid absorption and extensive vasculature. In this study, a model protein, bovine serum albumin (BSA) was adsorbed onto cationic PGA-co-PDL polymeric nanoparticles (NPs) prepared by a single emulsion solvent evaporation method using a cationic surfactant didodecyldimethylammonium bromide (DMAB) at 2% w/w (particle size: 128.64±06.01 nm and zeta-potential: +42.32±02.70 mV). The optimum cationic NPs were then surface adsorbed with BSA, NP:BSA (100:4) ratio yielded 10.01±1.19 µg of BSA per mg of NPs. The BSA adsorbed NPs (5 mg/ml) were then spray-dried in an aqueous suspension of L-leucine (7.5 mg/ml, corresponding to a ratio of 1:1.5/NP:L-leu) using a Büchi-290 mini-spray dryer to produce nanocomposite microparticles (NCMPs) containing cationic NPs. The aerosol properties showed a fine particle fraction (FPF, dae<4.46 µm) of 70.67±4.07% and mass median aerodynamic diameter (MMAD) of 2.80±0.21 µm suggesting a deposition in the respiratory bronchiolar region of the lungs.The cell viability was 75.76±03.55% (A549 cell line) at 156.25 µg/ml concentration after 24 h exposure. SDS-PAGE and circular dichroism (CD) confirmed that the primary and secondary structure of the released BSA was maintained. Moreover, the released BSA showed 78.76±1.54% relative esterolytic activity compared to standard BSA.


Assuntos
Nanopartículas/química , Poliésteres/química , Soroalbumina Bovina/química , Administração por Inalação , Adsorção , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Dicroísmo Circular , Liberação Controlada de Fármacos , Eletroforese em Gel de Poliacrilamida , Humanos , Microscopia Eletrônica de Transmissão , Nanopartículas/administração & dosagem , Nanopartículas/ultraestrutura , Poliésteres/administração & dosagem , Pós , Estabilidade Proteica , Compostos de Amônio Quaternário/química , Soroalbumina Bovina/administração & dosagem , Propriedades de Superfície , Tensoativos/química
20.
Pharm Res ; 32(4): 1341-53, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25297713

RESUMO

PURPOSE: Dry powder vaccine delivery via the pulmonary route has gained significant attention as an alternate route to parenteral delivery. In this study, we investigated bovine serum albumin (BSA) adsorbed poly(glycerol adipate-co-ω-pentadecalactone), PGA-co-PDL polymeric nanoparticles (NPs) within L-leucine (L-leu) microcarriers for dry powder inhalation. METHODS: NPs were prepared by oil-in-water single emulsion-solvent evaporation and particle size optimised using Taguchi's design of experiment. BSA was adsorbed onto NPs at different ratios at room temperature. The NPs were spray-dried in aqueous suspension of L-leu (1:1.5) using a Büchi-290 mini-spray dryer. The resultant nanocomposite microparticles (NCMPs) were characterised for toxicity (MTT assay), aerosolization (Next Generation Impactor), in vitro release study and BSA was characterized using SDS-PAGE and CD respectively. RESULTS: NPs of size 128.50 ± 6.57 nm, PDI 0.07 ± 0.03 suitable for targeting lung dendritic cells were produced. BSA adsorption for 1 h resulted in 10.23 ± 1.87 µg of protein per mg of NPs. Spray-drying with L-leu resulted in NCMPs with 42.35 ± 3.17% yield. In vitro release study at 37°C showed an initial burst release of 30.15 ± 2.33% with 95.15 ± 1.08% over 48 h. Aerosolization studies indicated fine particle fraction (FPF%) dae < 4.46 µm as 76.95 ± 5.61% and mass median aerodynamic diameter (MMAD) of 1.21 ± 0.67 µm. The cell viability was 87.01 ± 14.11% (A549 cell line) and 106.04 ± 21.14% (16HBE14o- cell line) with L-leu based NCMPs at 1.25 mg/ml concentration after 24 h treatment. The SDS-PAGE and CD confirmed the primary and secondary structure of the released BSA. CONCLUSIONS: The results suggest that PGA-co-PDL/L-leu NCMPs may be a promising carrier for pulmonary vaccine delivery due to excellent BSA adsorption and aerosolization behaviour.


Assuntos
Química Farmacêutica/métodos , Portadores de Fármacos/química , Nanopartículas/química , Poliésteres/química , Soroalbumina Bovina/administração & dosagem , Vacinas/administração & dosagem , Administração por Inalação , Adsorção , Aerossóis , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Dicroísmo Circular , Portadores de Fármacos/toxicidade , Liberação Controlada de Fármacos , Inaladores de Pó Seco , Eletroforese em Gel de Poliacrilamida , Humanos , Nanopartículas/toxicidade , Tamanho da Partícula , Poliésteres/toxicidade , Estabilidade Proteica , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...