Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Sensors (Basel) ; 23(19)2023 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-37836907

RESUMO

In smart cities, unmanned aerial vehicles (UAVS) play a vital role in surveillance, monitoring, and data collection. However, the widespread integration of UAVs brings forth a pressing concern: security and privacy vulnerabilities. This study introduces the SP-IoUAV (Secure and Privacy Preserving Intrusion Detection and Prevention for UAVS) model, tailored specifically for the Internet of UAVs ecosystem. The challenge lies in safeguarding UAV operations and ensuring data confidentiality. Our model employs cutting-edge techniques, including federated learning, differential privacy, and secure multi-party computation. These fortify data confidentiality and enhance intrusion detection accuracy. Central to our approach is the integration of deep neural networks (DNNs) like the convolutional neural network-long short-term memory (CNN-LSTM) network, enabling real-time anomaly detection and precise threat identification. This empowers UAVs to make immediate decisions in dynamic environments. To proactively counteract security breaches, we have implemented a real-time decision mechanism triggering alerts and initiating automatic blacklisting. Furthermore, multi-factor authentication (MFA) strengthens access security for the intrusion detection system (IDS) database. The SP-IoUAV model not only establishes a comprehensive machine framework for safeguarding UAV operations but also advocates for secure and privacy-preserving machine learning in UAVS. Our model's effectiveness is validated using the CIC-IDS2017 dataset, and the comparative analysis showcases its superiority over previous approaches like FCL-SBL, RF-RSCV, and RBFNNs, boasting exceptional levels of accuracy (99.98%), precision (99.93%), recall (99.92%), and F-Score (99.92%).

2.
IEEE Sens J ; 23(2): 898-905, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36913222

RESUMO

Ambient intelligence plays a crucial role in healthcare situations. It provides a certain way to deal with emergencies to provide the essential resources such as nearest hospitals and emergency stations promptly to avoid deaths. Since the outbreak of Covid-19, several artificial intelligence techniques have been used. However, situation awareness is a key aspect to handling any pandemic situation. The situation-awareness approach gives patients a routine life where they are continuously monitored by caregivers through wearable sensors and alert the practitioners in case of any patient emergency. Therefore, in this paper, we propose a situation-aware mechanism to detect Covid-19 systems early and alert the user to be self-aware regarding the situation to take precautions if the situation seems unlikely to be normal. We provide Belief-Desire-Intention intelligent reasoning mechanism for the system to analyze the situation after acquiring the data from the wearable sensors and alert the user according to their environment. We use the case study for further demonstration of our proposed framework. We model the proposed system by temporal logic and map the system illustration into a simulation tool called NetLogo to determine the results of the proposed system.

3.
Front Psychol ; 13: 970789, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36003113

RESUMO

Investigating prior methodologies, it has come to our knowledge that in smart cities, a disaster management system needs an autonomous reasoning mechanism to efficiently enhance the situation awareness of disaster sites and reduce its after-effects. Disasters are unavoidable events that occur at anytime and anywhere. Timely response to hazardous situations can save countless lives. Therefore, this paper introduces a multi-agent system (MAS) with a situation-awareness method utilizing NB-IoT, cyan industrial Internet of things (IIOT), and edge intelligence to have efficient energy, optimistic planning, range flexibility, and handle the situation promptly. We introduce the belief-desire-intention (BDI) reasoning mechanism in a MAS to enhance the ability to have disaster information when an event occurs and perform an intelligent reasoning mechanism to act efficiently in a dynamic environment. Moreover, we illustrate the framework using a case study to determine the working of the proposed system. We develop ontology and a prototype model to demonstrate the scalability of our proposed system.

4.
Front Public Health ; 10: 849185, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35309219

RESUMO

In the last decade, smart computing has garnered much attention, particularly in ubiquitous environments, thus increasing the ease of everyday human life. Users can dynamically interact with the systems using different modalities in a smart computing environment. The literature discussed multiple mechanisms to enhance the modalities for communication using different knowledge sources. Among others, Multi-context System (MCS) has been proven quite significant to interlink various context domains dynamically to a distributed environment. MCS is a collection of different contexts (independent knowledge sources), and every context contains its own set of defined rules and facts and inference systems. These contexts are interlinked via bridge rules. However, the interaction among knowledge sources could have the consequences such as bringing out inconsistent results. These issues may report situations such as the system being unable to reach a conclusion or communication in different contexts becoming asynchronous. There is a need for a suitable framework to resolve inconsistencies. In this article, we provide a framework based on contextual defeasible reasoning and a formalism of multi-agent environment is to handle the issue of inconsistent information in MCS. Additionally, in this work, a prototypal simulation is designed using a simulation tool called NetLogo, and a formalism about a Parkinson's disease patient's case study is also developed. Both of these show the validity of the framework.


Assuntos
Atenção à Saúde , Lógica , Comunicação , Simulação por Computador , Humanos
5.
Nanomaterials (Basel) ; 9(12)2019 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-31818029

RESUMO

Leishmaniasis is a widely distributed protozoan vector-born disease affecting almost 350 million people. Initially, chemotherapeutic drugs were employed for leishmania treatment but they had toxic side effects. Various nanotechnology-based techniques and products have emerged as anti-leishmanial drugs, including liposomes, lipid nano-capsules, metal and metallic oxide nanoparticles, polymeric nanoparticles, nanotubes and nanovaccines, due to their unique properties, such as bioavailability, lowered toxicity, targeted drug delivery, and biodegradability. Many new studies have emerged with nanoparticles serving as promising therapeutic agent for anti-leishmanial disease treatment. Liposomal Amphotericin B (AmB) is one of the successful nano-based drugs with high efficacy and negligible toxicity. A new nanovaccine concept has been studied as a carrier for targeted delivery. This review discusses different nanotechnology-based techniques, materials, and their efficacies in leishmaniasis treatment and their futuristic improvements.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA