Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Adv ; 9(26): eadg7841, 2023 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-37390201

RESUMO

The laser is one of the greatest inventions in history. Because of its ubiquitous applications and profound societal impact, the concept of the laser has been extended to other physical domains including phonon lasers and atom lasers. Quite often, a laser in one physical domain is pumped by energy in another. However, all lasers demonstrated so far have only lased in one physical domain. We have experimentally demonstrated simultaneous photon and phonon lasing in a two-mode silica fiber ring cavity via forward intermodal stimulated Brillouin scattering (SBS) mediated by long-lived flexural acoustic waves. This two-domain laser may find potential applications in optical/acoustic tweezers, optomechanical sensing, microwave generation, and quantum information processing. Furthermore, we believe that this demonstration will usher in other multidomain lasers and related applications.


Assuntos
Fônons , Fótons , Lasers , Pinças Ópticas , Som
2.
Opt Express ; 29(10): 15403-15412, 2021 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-33985240

RESUMO

Interferometric image processing systems based on image inversion normally use multiple paths with inversion mirrors. Since such systems must meet strict requirements of alignment and stability, a common-path implementation using polarization channels and six anisotropic optical elements was recently introduced. We demonstrate here the operation of a common-path polarization-based image-inversion interferometeric system using only two anisotropic lenses. Applications such as spatial parity analysis and image centroid measurements are examined theoretically and demonstrated experimentally.

3.
Opt Express ; 27(4): 5685-5695, 2019 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-30876165

RESUMO

We present a collinear, common-path image-inversion interferometer using the polarization channels of a single optical beam. Each of the channels is an imaging system of unit magnification, one positive and the other negative (inverted). Image formation is realized by means of a set of anisotropic lenses, each offering refractive power in one polarization and none in the other. The operation of the interferometer as a spatial-parity analyzer is demonstrated experimentally by separating even- and odd-order orbital angular momentum modes of an optical beam. The common-path configuration overcomes the stability issues present in conventional two-path interferometers.

4.
Nat Commun ; 8(1): 739, 2017 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-28963536

RESUMO

The information-carrying capacity of a single photon can be vastly expanded by exploiting its multiple degrees of freedom: spatial, temporal, and polarization. Although multiple qubits can be encoded per photon, to date only two-qubit single-photon quantum operations have been realized. Here, we report an experimental demonstration of three-qubit single-photon, linear, deterministic quantum gates that exploit photon polarization and the two-dimensional spatial-parity-symmetry of the transverse single-photon field. These gates are implemented using a polarization-sensitive spatial light modulator that provides a robust, non-interferometric, versatile platform for implementing controlled unitary gates. Polarization here represents the control qubit for either separable or entangling unitary operations on the two spatial-parity target qubits. Such gates help generate maximally entangled three-qubit Greenberger-Horne-Zeilinger and W states, which is confirmed by tomographical reconstruction of single-photon density matrices. This strategy provides access to a wide range of three-qubit states and operations for use in few-qubit quantum information processing protocols.Photons are essential for quantum information processing, but to date only two-qubit single-photon operations have been realized. Here the authors demonstrate experimentally a three-qubit single-photon linear deterministic quantum gate by exploiting polarization along with spatial-parity symmetry.

5.
Sci Rep ; 7(1): 8948, 2017 08 21.
Artigo em Inglês | MEDLINE | ID: mdl-28827580

RESUMO

Propagation of coherent light through a disordered network is accompanied by randomization and possible conversion into thermal light. Here, we show that network topology plays a decisive role in determining the statistics of the emerging field if the underlying lattice is endowed with chiral symmetry. In such lattices, eigenmode pairs come in skew-symmetric pairs with oppositely signed eigenvalues. By examining one-dimensional arrays of randomly coupled waveguides arranged on linear and ring topologies, we are led to a remarkable prediction: the field circularity and the photon statistics in ring lattices are dictated by its parity while the same quantities are insensitive to the parity of a linear lattice. For a ring lattice, adding or subtracting a single lattice site can switch the photon statistics from super-thermal to sub-thermal, or vice versa. This behavior is understood by examining the real and imaginary fields on a lattice exhibiting chiral symmetry, which form two strands that interleave along the lattice sites. These strands can be fully braided around an even-sited ring lattice thereby producing super-thermal photon statistics, while an odd-sited lattice is incommensurate with such an arrangement and the statistics become sub-thermal.

6.
Sci Rep ; 7(1): 4169, 2017 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-28646199

RESUMO

A crystal superlattice structure featuring nonlinear layers with alternating orthogonal optic axes interleaved with orthogonal poling directions, is shown to generate high-quality hyperentangled photon pairs via orthogonal quasi-phase-matched spontaneous parametric downconversion. We demonstrate that orthogonal quasi-phase matching (QPM) processes in a single nonlinear domain structure correct phase and group-velocity mismatches concurrently. Compared with the conventional two-orthogonal-crystals source and the double-nonlinearity single-crystal source, the orthogonal QPM superlattice is shown to suppress the spatial and temporal distinguishability of the generated photon pairs by several orders of magnitude, depending on the number of layers. This enhanced all-over-the-cone indistinguishability enables the generation of higher fluxes of photon-pairs by means of the combined use of (a) long nonlinear crystal in noncollinear geometry, (b) low coherence-time pumping and ultra-wide-band spectral detection, and (c) focused pumping and over-the-cone detection. While each of these three features is challenging by itself, it is remarkable that the orthogonal QPM superlattice meets all of these challenges without the need for separate spatial or temporal compensation.

7.
Sci Rep ; 5: 15333, 2015 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-26478452

RESUMO

The coherence of an optical beam having multiple degrees of freedom (DoFs) is described by a coherency matrix G spanning these DoFs. This optical coherency matrix has not been measured in its entirety to date--even in the simplest case of two binary DoFs where G is a 4 × 4 matrix. We establish a methodical yet versatile approach--optical coherency matrix tomography--for reconstructing G that exploits the analogy between this problem in classical optics and that of tomographically reconstructing the density matrix associated with multipartite quantum states in quantum information science. Here G is reconstructed from a minimal set of linearly independent measurements, each a cascade of projective measurements for each DoF. We report the first experimental measurements of the 4 × 4 coherency matrix G associated with an electromagnetic beam in which polarization and a spatial DoF are relevant, ranging from the traditional two-point Young's double slit to spatial parity and orbital angular momentum modes.

8.
Opt Lett ; 39(8): 2411-4, 2014 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-24979006

RESUMO

The two-point coherence of an electromagnetic field is represented completely by a 4×4 coherency matrix G that encodes the joint polarization-spatial-field correlations. Here, we describe a systematic sequence of cascaded spatial and polarization projective measurements that are sufficient to tomographically reconstruct G--a task that, to the best of our knowledge, has not yet been realized. Our approach benefits from the correspondence between this reconstruction problem in classical optics and that of quantum state tomography for two-photon states in quantum optics. Identifying G uniquely determines all the measurable correlation characteristics of the field and, thus, lifts ambiguities that arise from reliance on traditional scalar descriptors, especially when the field's degrees of freedom are correlated or classically entangled.

9.
Opt Lett ; 37(14): 2889-91, 2012 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-22825168

RESUMO

We generalize the traditional concept of temporal optical interferometry to any degree of freedom of a coherent optical field. By identifying the structure of a unitary optical transformation that we designate the generalized phase operator, we enable optical interferometry to be carried out in any modal basis describing a degree of freedom. The structure of the generalized phase operator is that of a fractional optical transform, thus establishing the connection between fractional transforms, optical interferometry, and modal analysis.

10.
Opt Lett ; 36(23): 4683-5, 2011 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-22139283

RESUMO

We describe an approach to determining both the angular and the radial modal content of a scalar optical beam in terms of optical angular momentum modes. A modified Mach-Zehnder interferometer that incorporates a spatial rotator to determine the angular modes and an optical realization of the fractional Hankel transform (fHT) to determine the radial modes is analyzed. Varying the rotation angle and the order of the fHT produces a two-dimensional (2D) interferogram from which we extract the modal coefficients by simple 2D Fourier analysis.

11.
Opt Express ; 19(14): 13636-46, 2011 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-21747520

RESUMO

We report on the observation of Anderson wave localization in one-dimensional waveguide arrays with off-diagonal disorder. The waveguide elements are inscribed in silica glass, and a uniform random distribution of coupling parameters is achieved by a precise variation of the relative waveguide positions. In the absence of disorder we observe ballistic transport as expected from discrete diffraction in periodic arrays. When off-diagonal disorder is deliberately introduced into the array we observe Anderson localization. The strength of the localization signature increases with higher levels of disorder.


Assuntos
Refratometria/instrumentação , Ressonância de Plasmônio de Superfície/instrumentação , Desenho Assistido por Computador , Desenho de Equipamento , Análise de Falha de Equipamento , Luz , Espalhamento de Radiação
12.
Opt Express ; 18(19): 20475-90, 2010 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-20940940

RESUMO

Lithium niobate photonic circuits have the salutary property of permitting the generation, transmission, and processing of photons to be accommodated on a single chip. Compact photonic circuits such as these, with multiple components integrated on a single chip, are crucial for efficiently implementing quantum information processing schemes.We present a set of basic transformations that are useful for manipulating modal qubits in Ti:LiNbO(3) photonic quantum circuits. These include the mode analyzer, a device that separates the even and odd components of a state into two separate spatial paths; the mode rotator, which rotates the state by an angle in mode space; and modal Pauli spin operators that effect related operations. We also describe the design of a deterministic, two-qubit, single-photon, CNOT gate, a key element in certain sets of universal quantum logic gates. It is implemented as a Ti:LiNbO(3) photonic quantum circuit in which the polarization and mode number of a single photon serve as the control and target qubits, respectively. It is shown that the effects of dispersion in the CNOT circuit can be mitigated by augmenting it with an additional path. The performance of all of these components are confirmed by numerical simulations. The implementation of these transformations relies on selective and controllable power coupling among single- and two-mode waveguides, as well as the polarization sensitivity of the Pockels coefficients in LiNbO(3).


Assuntos
Nióbio/química , Óxidos/química , Refratometria/instrumentação , Processamento de Sinais Assistido por Computador/instrumentação , Titânio/química , Simulação por Computador , Desenho Assistido por Computador , Desenho de Equipamento , Análise de Falha de Equipamento , Modelos Teóricos , Teoria Quântica
13.
Appl Opt ; 48(20): 4009-17, 2009 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-19593355

RESUMO

Coherence-domain imaging systems can be operated in a single-photon-counting mode, offering low detector noise; this in turn leads to increased sensitivity for weak light sources and weakly reflecting samples. We have demonstrated that excellent axial resolution can be obtained in a photon-counting coherence-domain imaging (CDI) system that uses light generated via spontaneous parametric downconversion (SPDC) in a chirped periodically poled stoichiometric lithium tantalate (chirped-PPSLT) structure, in conjunction with a niobium nitride superconducting single-photon detector (SSPD). The bandwidth of the light generated via SPDC, as well as the bandwidth over which the SSPD is sensitive, can extend over a wavelength region that stretches from 700 to 1500 nm. This ultrabroad wavelength band offers a near-ideal combination of deep penetration and ultrahigh axial resolution for the imaging of biological tissue. The generation of SPDC light of adjustable bandwidth in the vicinity of 1064 nm, via the use of chirped-PPSLT structures, had not been previously achieved. To demonstrate the usefulness of this technique, we construct images for a hierarchy of samples of increasing complexity: a mirror, a nitrocellulose membrane, and a biological sample comprising onion-skin cells.


Assuntos
Aumento da Imagem/instrumentação , Fotometria/instrumentação , Processamento de Sinais Assistido por Computador/instrumentação , Tomografia de Coerência Óptica/instrumentação , Transdutores , Condutividade Elétrica , Desenho de Equipamento , Análise de Falha de Equipamento , Fótons
14.
Phys Rev Lett ; 102(10): 100504, 2009 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-19392098

RESUMO

We describe a novel effect involving odd-order dispersion cancellation. We demonstrate that odd- and even-order dispersion cancellation may be obtained in different regions of a single quantum interferogram using frequency-anticorrelated entangled photons and a new type of quantum interferometer. This offers new opportunities for quantum communication and metrology in dispersive media.

15.
Phys Rev Lett ; 101(23): 233603, 2008 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-19113552

RESUMO

We report the first experimental demonstration of even-order aberration cancellation in quantum interferometry. The effect is a spatial counterpart of the spectral group velocity dispersion cancellation, which is associated with spectral entanglement. It is manifested in temporal interferometry by virtue of the multiparameter spatial-spectral entanglement. Spatially entangled photons, generated by spontaneous parametric down-conversion, were subjected to spatial aberrations introduced by a deformable mirror that modulates the wave front. We show that only odd-order spatial aberrations affect the quality of quantum interference.

16.
Phys Rev Lett ; 100(18): 183601, 2008 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-18518370

RESUMO

We generate ultrabroadband biphotons via the process of spontaneous parametric down-conversion (SPDC) in quasi-phase-matched nonlinear gratings that have a linearly chirped wave vector. By using these ultrabroadband biphotons (300-nm bandwidth), we measure the narrowest Hong-Ou-Mandel dip to date, having a full width at half maximum of 7.1 fs. This enables the generation of a high flux of nonoverlapping biphotons with ultrabroad bandwidth, thereby promoting the use of SPDC light in many nonclassical applications.

17.
Opt Express ; 16(11): 7634-40, 2008 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-18545470

RESUMO

We report the results of two experiments performed with two-photon light, produced via collinear degenerate optical spontaneous parametric downconversion (SPDC), in which both second-order (one-photon) and fourth-order (two-photon) interferograms are recorded in a Mach-Zehnder interferometer (MZI). In the first experiment, high-visibility fringes are obtained for both the second- and fourth-order interferograms. In the second experiment, the MZI is modified by the removal of a mirror from one of its arms; this leaves the fourth-order interferogram unchanged, but extinguishes the second-order interferogram. A theoretical model that takes into consideration both the temporal and spatial degrees-of-freedom of the two-photon state successfully explains the results. While the temporal interference in the MZI is independent of the spatial coherence of the source, that of the modified MZI is not.


Assuntos
Interferometria/métodos , Modelos Teóricos , Refratometria/métodos , Tomografia de Coerência Óptica/métodos , Simulação por Computador , Luz , Fótons , Espalhamento de Radiação
18.
Phys Rev Lett ; 99(17): 170408, 2007 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-17995309

RESUMO

We report the first experimental violation of Bell's inequality in the spatial domain using the Einstein-Podolsky-Rosen state. Two-photon states generated via optical spontaneous parametric down-conversion are shown to be entangled in the parity of their one-dimensional transverse spatial profile. Superpositions of Bell states are prepared by manipulation of the optical pump's transverse spatial parity-a classical parameter. The Bell-operator measurements are made possible by devising simple optical arrangements that perform rotations in the one-dimensional spatial-parity space of each photon of an entangled pair and projective measurements onto a basis of even-odd functions. A Bell-operator value of 2.389+/-0.016 is recorded, a violation of the inequality by more than 24 standard deviations.

19.
Phys Rev Lett ; 99(25): 250502, 2007 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-18233506

RESUMO

We present the novel embodiment of a photonic qubit that makes use of one continuous spatial degree of freedom of a single photon and relies on the parity of the photon's transverse spatial distribution. Using optical spontaneous parametric down-conversion to produce photon pairs, we demonstrate the controlled generation of entangled-photon states in this new space. Specifically, two Bell states, and a continuum of their superpositions, are generated by simple manipulation of a classical parameter, the optical-pump spatial parity, and not by manipulation of the entangled photons themselves. An interferometric device, isomorphic in action to a polarizing beam splitter, projects the spatial-parity states onto an even-odd basis. This new physical realization of photonic qubits could be used as a foundation for future experiments in quantum information processing.

20.
J Am Chem Soc ; 128(6): 1796-7, 2006 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-16464071

RESUMO

We demonstrate the selective functionalization of 3-D polymer microstructures that were created using multiphoton absorption polymerization. By fabricating different portions of the structures with acrylic and methacrylic polymers, we are able to take advantage of the differential reactivities of these materials to perform functionalization chemistry on a single polymeric component. We demonstrate the selective deposition of metal to create structures, such as a functional microinductor. Our strategy is quite general and can be extended readily to the deposition of materials, such as metal oxides and biomolecules.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...