Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 69
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Clin Invest ; 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38652550

RESUMO

The immune system can control cancer progression. However, even though some innate immune sensors of cellular stress are expressed intrinsically in epithelial cells, their potential role in cancer aggressiveness and subsequent overall survival in humans is mainly unknown. Here, we show that NLR family CARD Domain Containing 4 (NLRC4) is downregulated in epithelial tumor cells of colorectal cancer (CRC) patients by using spatial tissue imaging. Strikingly, only the loss of tumor NLRC4 but not stromal is associated with poor immune infiltration (mainly dendritic and CD4+/CD8+ T cells) and accurately predicts progression to metastatic Stage IV and decrease of overall survival. By combining multi-omics approaches, we show that restoring NLRC4 expression in human colorectal cancer cells triggers a broad inflammasome-independent immune reprogramming consisting of Type-I IFN signaling genes and the release of chemokines and myeloid growth factors involved in the tumor infiltration and activation of dendritic cells (DCs) and T cells. Consistently, such reprogramming in cancer cells is sufficient to directly mature human DCs towards a Th1 antitumor immune response through IL-12 production in vitro. In multiple human carcinomas (colorectal, lung, and skin), we confirmed that NLRC4 expression in patient tumors is strongly associated with Type-I IFN genes, immune infiltrates and high microsatellite instability. Thus, we shed light on the epithelial innate immune sensor NLRC4 as a novel therapeutic target to promote an efficient antitumor immune response against the aggressiveness of various carcinomas.

2.
Cell Rep ; 43(2): 113773, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38350444

RESUMO

Hepatocellular carcinoma (HCC) is an inflammation-associated cancer arising from viral or non-viral etiologies including steatotic liver diseases (SLDs). Expansion of immunosuppressive myeloid cells is a hallmark of inflammation and cancer, but their heterogeneity in HCC is not fully resolved and might underlie immunotherapy resistance. Here, we present a high-resolution atlas of innate immune cells from patients with HCC that unravels an SLD-associated contexture characterized by influx of inflammatory and immunosuppressive myeloid cells, including a discrete population of THBS1+ regulatory myeloid (Mreg) cells expressing monocyte- and neutrophil-affiliated genes. THBS1+ Mreg cells expand in SLD-associated HCC, populate fibrotic lesions, and are associated with poor prognosis. THBS1+ Mreg cells are CD163+ but distinguished from macrophages by high expression of triggering receptor expressed on myeloid cells 1 (TREM1), which contributes to their immunosuppressive activity and promotes HCC tumor growth in vivo. Our data support myeloid subset-targeted immunotherapies to treat HCC.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Receptor Gatilho 1 Expresso em Células Mieloides , Terapia de Imunossupressão , Células Mieloides , Imunossupressores , Inflamação
3.
Sci Rep ; 13(1): 18848, 2023 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-37914804

RESUMO

Elevated plasma numbers of atherogenic apoB-lipoproteins (apoB), mostly as low-density lipoproteins (LDL), predict diabetes risk by unclear mechanisms. Upregulation of the NLRP3 inflammasome/interleukin-1 beta (IL-1ß) system in white adipose tissue (WAT) is implicated in type 2 diabetes (T2D); however, metabolic signals that stimulate it remain unexplored. We hypothesized that (1) subjects with high-apoB have higher WAT IL-1ß-secretion than subjects with low-apoB, (2) WAT IL-1ß-secretion is associated with T2D risk factors, and (3) LDL prime and/or activate the WAT NLRP3 inflammasome. Forty non-diabetic subjects were assessed for T2D risk factors related to systemic and WAT glucose and fat metabolism. Regulation of the NLRP3 inflammasome was explored using LDL without/with the inflammasome's priming and activation controls (LPS and ATP). LDL induced IL1B-expression and IL-1ß-secretion in the presence of ATP in WAT and macrophages. Subjects with high-apoB had higher WAT IL-1ß-secretion independently of covariates. The direction of association of LDL-induced WAT IL-1ß-secretion to T2D risk factors was consistently pathological in high-apoB subjects only. Adjustment for IL-1ß-secretion eliminated the association of plasma apoB with T2D risk factors. In conclusion, subjects with high-apoB have higher WAT IL-1ß-secretion that may explain their risk for T2D and may be related to LDL-induced priming of the NLRP3 inflammasome.ClinicalTrials.gov (NCT04496154): Omega-3 to Reduce Diabetes Risk in Subjects With High Number of Particles That Carry "Bad Cholesterol" in the Blood-Full Text View-ClinicalTrials.gov.


Assuntos
Diabetes Mellitus Tipo 2 , Inflamassomos , Humanos , Inflamassomos/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Lipoproteínas LDL/farmacologia , Interleucina-1beta/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Macrófagos/metabolismo , Apolipoproteínas B , Tecido Adiposo Branco/metabolismo , Trifosfato de Adenosina
4.
Front Cell Dev Biol ; 10: 839041, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35517498

RESUMO

The inflammasomes are critical regulators of innate immunity, inflammation and cell death and have emerged as important regulators of cancer development and control. Inflammasomes are assembled by pattern recognition receptors (PRR) following the sensing of microbial- or danger-associated molecular patterns (MAMPs/DAMPs) and elicit inflammation through the oligomerization and activation of inflammatory caspases. These cysteinyl-aspartate proteases cleave the proinflammatory cytokines IL-1ß and IL-18 into their biologically active mature form. The roles of the inflammasomes and associated pro-inflammatory cytokines vary greatly depending on the cancer type. Here we discuss recent studies highlighting contrasting roles of the inflammasome pathway in curbing versus promoting tumorigenesis. On one hand, the inflammasomes participate in stimulating anti-tumor immunity, but they have also been shown to contribute to immunosuppression or to directly promote tumor cell survival, proliferation, and metastasis. A better understanding of inflammasome functions in different cancers is thus critical for the design of novel cancer immunotherapies.

5.
Cells ; 10(11)2021 10 30.
Artigo em Inglês | MEDLINE | ID: mdl-34831183

RESUMO

Myeloid cells are a key determinant of tumor progression and patient outcomes in a range of cancers and are therefore being actively pursued as targets of new immunotherapies. The recent use of high-dimensional single-cell approaches, e.g., mass cytometry and single-cell RNA-sequencing (scRNA-seq) has reinforced the predominance of myeloid cells in the tumor microenvironment and uncovered their phenotypic diversity in different cancers. The cancerous metabolic environment has emerged as a critical modulator of myeloid cell functions in anti-tumor immunity versus immune suppression and immune evasion. Here, we discuss mechanisms of immune-metabolic crosstalk in tumorigenesis, with a particular focus on the tumor-associated myeloid cell's metabolic programs. We highlight the impact of several metabolic pathways on the pro-tumoral functions of tumor-associated macrophages and myeloid-derived suppressor cells and discuss the potential myeloid cell metabolic checkpoints for cancer immunotherapy, either as monotherapies or in combination with other immunotherapies.


Assuntos
Células Mieloides/metabolismo , Microambiente Tumoral , Ensaios Clínicos como Assunto , Glicólise , Humanos , Metabolismo dos Lipídeos , Proteínas Wnt/metabolismo
6.
Cancers (Basel) ; 13(17)2021 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-34503151

RESUMO

Hepatocellular carcinoma (HCC) is a classical inflammation-promoted cancer that occurs in a setting of liver diseases, including nonalcoholic fatty liver disease (NAFLD) or alcoholic liver disease (ALD). These pathologies share key characteristics, notably intestinal dysbiosis, increased intestinal permeability and an imbalance in bile acids, choline, fatty acids and ethanol metabolites. Translocation of microbial- and danger-associated molecular patterns (MAMPs and DAMPs) from the gut to the liver elicits profound chronic inflammation, leading to severe hepatic injury and eventually HCC progression. In this review, we first describe how the gut and the liver communicate and discuss mechanisms by which the intestinal microbiota elicit hepatic inflammation and HCC. We focus on the role of microbial products, e.g., MAMPs, host inflammatory effectors and host-microbiome-derived metabolites in tumor-promoting mechanisms, including cell death and senescence. Last, we explore the potential of harnessing the microbiota to treat liver diseases and HCC.

7.
Front Cell Dev Biol ; 9: 719072, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34540837

RESUMO

The community of the diverse microorganisms residing in the gastrointestinal tract, known as the gut microbiota, is exceedingly being studied for its impact on health and disease. This community plays a major role in nutrient metabolism, maintenance of the intestinal epithelial barrier but also in local and systemic immunomodulation. A dysbiosis of the gut microbiota, characterized by an unbalanced microbial ecology, often leads to a loss of essential functions that may be associated with proinflammatory conditions. Specifically, some key microbes that are depleted in dysbiotic ecosystems, called keystone species, carry unique functions that are essential for the balance of the microbiota. In this review, we discuss current understanding of reported keystone species and their proposed functions in health. We also elaborate on current and future bioinformatics tools needed to identify missing functions in the gut carried by keystone species. We propose that the identification of such keystone species functions is a major step for the understanding of microbiome dynamics in disease and toward the development of microbiome-based therapeutics.

8.
Sci Transl Med ; 13(600)2021 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-34193612

RESUMO

Systemic lupus erythematosus (SLE) is a systemic autoimmune disease characterized by a loss of tolerance toward self-nucleic acids, autoantibody production, interferon expression and signaling, and a defect in the regulatory T (Treg) cell compartment. In this work, we identified that platelets from patients with active SLE preferentially interacted with Treg cells via the P-selectin/P-selectin glycoprotein ligand-1 (PSGL-1) axis. Selectin interaction with PSGL-1 blocked the regulatory and suppressive properties of Treg cells and particularly follicular Treg cells by triggering Syk phosphorylation and an increase in intracytosolic calcium. Mechanistically, P-selectin engagement on Treg cells induced a down-regulation of the transforming growth factor-ß axis, altering the phenotype of Treg cells and limiting their immunosuppressive responses. In patients with SLE, we found an up-regulation of P- and E-selectin both on microparticles and in their soluble forms that correlated with disease activity. Last, blocking P-selectin in a mouse model of SLE improved cardinal features of the disease, such as anti-dsDNA antibody concentrations and kidney pathology. Overall, our results identify a P-selectin-dependent pathway that is active in patients with SLE and validate it as a potential therapeutic avenue.


Assuntos
Lúpus Eritematoso Sistêmico , Linfócitos T Reguladores , Animais , Humanos , Camundongos , Selectinas , Fator de Crescimento Transformador beta
9.
Front Immunol ; 12: 675294, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34322116

RESUMO

Aspergillus fumigatus airway infections are associated with increased rates of hospitalizations and declining lung function in patients with chronic lung disease. While the pathogenesis of invasive A. fumigatus infections is well studied, little is known about the development and progression of airway infections. Previous studies have demonstrated a critical role for the IL-1 cytokines, IL-1α and IL-1ß in enhancing pulmonary neutrophil recruitment during invasive aspergillosis. Here we use a mouse model of A. fumigatus airway infection to study the role of these IL-1 cytokines in immunocompetent mice. In the absence of IL-1 receptor signaling, mice exhibited reduced numbers of viable pulmonary neutrophils and increased levels of neutrophil apoptosis during fungal airway infection. Impaired neutrophil viability in these mice was associated with reduced pulmonary and systemic levels of G-CSF, and treatment with G-CSF restored both neutrophil viability and resistance to A. fumigatus airway infection. Taken together, these data demonstrate that IL-1 dependent G-CSF production plays a key role for host resistance to A. fumigatus airway infection through suppressing neutrophil apoptosis at the site of infection.


Assuntos
Aspergilose/imunologia , Aspergillus fumigatus/patogenicidade , Pulmão/imunologia , Neutrófilos/fisiologia , Aspergilose Pulmonar/imunologia , Receptores de Interleucina-1/fisiologia , Animais , Apoptose/imunologia , Quimiocinas/metabolismo , Fator Estimulador de Colônias de Granulócitos/metabolismo , Humanos , Interleucina-1alfa , Interleucina-1beta , Pulmão/patologia , Macrófagos , Camundongos , Camundongos Endogâmicos C57BL , Infiltração de Neutrófilos , Neutrófilos/imunologia
10.
Sci Rep ; 11(1): 15073, 2021 07 23.
Artigo em Inglês | MEDLINE | ID: mdl-34302001

RESUMO

The estrogen-related receptor alpha (ERRα) is a primary regulator of mitochondrial energy metabolism, function and dynamics, and has been implicated in autophagy and immune regulation. ERRα is abundantly expressed in the intestine and in cells of the immune system. However, its role in inflammatory bowel disease (IBD) remains unknown. Here, we report a protective role of ERRα in the intestine. We found that mice deficient in ERRα were susceptible to experimental colitis, exhibiting increased colon inflammation and tissue damage. This phenotype was mediated by impaired compensatory proliferation of intestinal epithelial cells (IEC) following injury, enhanced IEC apoptosis and necrosis and reduced mucus-producing goblet cell counts. Longitudinal analysis of the microbiota demonstrated that loss of ERRα lead to a reduction in microbiome α-diversity and depletion of healthy gut bacterial constituents. Mechanistically, ERRα mediated its protective effects by acting within the radio-resistant compartment of the intestine. It promoted disease tolerance through transcriptional control of key genes involved in intestinal tissue homeostasis and repair. These findings provide new insights on the role of ERRα in the gut and extends our current knowledge of nuclear receptors implicated in IBD.


Assuntos
Colite/genética , Metabolismo Energético/genética , Doenças Inflamatórias Intestinais/genética , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/genética , Receptores de Estrogênio/genética , Animais , Apoptose/genética , Proliferação de Células/genética , Colite/induzido quimicamente , Colite/metabolismo , Colite/patologia , Colo/metabolismo , Colo/patologia , Sulfato de Dextrana/toxicidade , Modelos Animais de Doenças , Homeostase/genética , Humanos , Inflamação/induzido quimicamente , Inflamação/genética , Inflamação/patologia , Doenças Inflamatórias Intestinais/metabolismo , Doenças Inflamatórias Intestinais/patologia , Mucosa Intestinal/metabolismo , Mucosa Intestinal/patologia , Camundongos , Microbiota/genética , Necrose/genética , Necrose/metabolismo , Necrose/patologia , Receptor ERRalfa Relacionado ao Estrogênio
11.
Front Immunol ; 12: 655697, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33815418

RESUMO

Hepatocellular carcinoma (HCC) is the most common liver tumor and among the deadliest cancers worldwide. Advanced HCC overall survival is meager and has not improved over the last decade despite approval of several tyrosine kinase inhibitors (TKi) for first and second-line treatments. The recent approval of immune checkpoint inhibitors (ICI) has revolutionized HCC palliative care. Unfortunately, the majority of HCC patients fail to respond to these therapies. Here, we elaborate on the immune landscapes of the normal and cirrhotic livers and of the unique HCC tumor microenvironment. We describe the molecular and immunological classifications of HCC, discuss the role of specific immune cell subsets in this cancer, with a focus on myeloid cells and pathways in anti-tumor immunity, tumor promotion and immune evasion. We also describe the challenges and opportunities of immunotherapies in HCC and discuss new avenues based on harnessing the anti-tumor activity of myeloid, NK and γδ T cells, vaccines, chimeric antigen receptors (CAR)-T or -NK cells, oncolytic viruses, and combination therapies.


Assuntos
Carcinoma Hepatocelular/imunologia , Carcinoma Hepatocelular/terapia , Suscetibilidade a Doenças , Imunoterapia , Neoplasias Hepáticas/imunologia , Neoplasias Hepáticas/terapia , Animais , Biomarcadores Tumorais , Carcinoma Hepatocelular/diagnóstico , Terapia Combinada , Suscetibilidade a Doenças/imunologia , Predisposição Genética para Doença , Humanos , Sistema Imunitário/imunologia , Sistema Imunitário/metabolismo , Imunomodulação , Imunoterapia/métodos , Fígado/imunologia , Fígado/metabolismo , Fígado/patologia , Neoplasias Hepáticas/diagnóstico , Técnicas de Diagnóstico Molecular , Resultado do Tratamento , Microambiente Tumoral/genética , Microambiente Tumoral/imunologia
12.
Physiol Rep ; 9(3): e14721, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33527668

RESUMO

BACKGROUND: LDL-cholesterol lowering variants that upregulate receptor uptake of LDL, such as in PCSK9 and HMGCR, are associated with diabetes via unclear mechanisms. Activation of the NLRP3 inflammasome/interleukin-1 beta (IL-1ß) pathway promotes white adipose tissue (WAT) dysfunction and type 2 diabetes (T2D) and is regulated by LDL receptors (LDLR and CD36). We hypothesized that: (a) normocholesterolemic subjects with lower plasma PCSK9, identifying those with higher WAT surface-expression of LDLR and CD36, have higher activation of WAT NLRP3 inflammasome and T2D risk factors, and; (b) LDL upregulate adipocyte NLRP3 inflammasome and inhibit adipocyte function. METHODOLOGY: Post hoc analysis was conducted in 27 overweight/ obese subjects with normal plasma LDL-C and measures of disposition index (DI during Botnia clamps) and postprandial fat metabolism. WAT was assessed for surface-expression of LDLR and CD36 (immunohistochemistry), protein expression (immunoblot), IL-1ß secretion (AlphaLISA), and function (3 H-triolein storage). RESULTS: Compared to subjects with higher than median plasma PCSK9, subjects with lower PCSK9 had higher WAT surface-expression of LDLR (+81%) and CD36 (+36%), WAT IL-1ß secretion (+284%), plasma IL-1 receptor-antagonist (+85%), and postprandial hypertriglyceridemia, and lower WAT pro-IL-1ß protein (-66%), WAT function (-62%), and DI (-28%), without group-differences in body composition, energy intake or expenditure. Adjusting for WAT LDLR or CD36 eliminated group-differences in WAT function, DI, and postprandial hypertriglyceridemia. Native LDL inhibited Simpson-Golabi Behmel-syndrome (SGBS) adipocyte differentiation and function and increased inflammation. CONCLUSION: Normocholesterolemic subjects with lower plasma PCSK9 and higher WAT surface-expression of LDLR and CD36 have higher WAT NLRP3 inflammasome activation and T2D risk factors. This may be due to LDL-induced inhibition of adipocyte function.


Assuntos
Tecido Adiposo Branco/metabolismo , Antígenos CD36/metabolismo , Colesterol/sangue , Inflamassomos/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Obesidade/sangue , Pró-Proteína Convertase 9/sangue , Receptores de LDL/metabolismo , Adipócitos Brancos/imunologia , Adipócitos Brancos/metabolismo , Adipogenia , Tecido Adiposo Branco/imunologia , Idoso , Biomarcadores/sangue , Células Cultivadas , Diabetes Mellitus Tipo 2/etiologia , Regulação para Baixo , Feminino , Humanos , Interleucina-1beta/metabolismo , Masculino , Pessoa de Meia-Idade , Obesidade/complicações , Obesidade/enzimologia , Obesidade/imunologia , Medição de Risco , Fatores de Risco
13.
Front Immunol ; 11: 585616, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33154756

RESUMO

Glioblastoma (GBM) are the most common tumors of the central nervous system and among the deadliest cancers in adults. GBM overall survival has not improved over the last decade despite optimization of therapeutic standard-of-care. While immune checkpoint inhibitors (ICI) have revolutionized cancer care, they unfortunately have little therapeutic success in GBM. Here, we elaborate on normal brain and GBM-associated immune landscapes. We describe the role of microglia and tumor-associated macrophages (TAMs) in immune suppression and highlight the impact of energy metabolism in immune evasion. We also describe the challenges and opportunities of immunotherapies in GBM and discuss new avenues based on harnessing the anti-tumor activity of myeloid cells, vaccines, chimeric antigen receptors (CAR)-T and -NK cells, oncolytic viruses, nanocarriers, and combination therapies.


Assuntos
Neoplasias Encefálicas/imunologia , Neoplasias Encefálicas/terapia , Glioblastoma/imunologia , Glioblastoma/terapia , Imunoterapia/métodos , Animais , Humanos , Evasão Tumoral/imunologia
14.
Nat Immunol ; 21(12): 1528-1539, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33020661

RESUMO

Mutations that impact immune cell migration and result in immune deficiency illustrate the importance of cell movement in host defense. In humans, loss-of-function mutations in DOCK8, a guanine exchange factor involved in hematopoietic cell migration, lead to immunodeficiency and, paradoxically, allergic disease. Here, we demonstrate that, like humans, Dock8-/- mice have a profound type 2 CD4+ helper T (TH2) cell bias upon pulmonary infection with Cryptococcus neoformans and other non-TH2 stimuli. We found that recruited Dock8-/-CX3CR1+ mononuclear phagocytes are exquisitely sensitive to migration-induced cell shattering, releasing interleukin (IL)-1ß that drives granulocyte-macrophage colony-stimulating factor (GM-CSF) production by CD4+ T cells. Blocking IL-1ß, GM-CSF or caspase activation eliminated the type-2 skew in mice lacking Dock8. Notably, treatment of infected wild-type mice with apoptotic cells significantly increased GM-CSF production and TH2 cell differentiation. This reveals an important role for cell death in driving type 2 signals during infection, which may have implications for understanding the etiology of type 2 CD4+ T cell responses in allergic disease.


Assuntos
Fatores de Troca do Nucleotídeo Guanina/deficiência , Ativação Linfocitária/genética , Ativação Linfocitária/imunologia , Células Th2/imunologia , Células Th2/metabolismo , Animais , Biomarcadores , Caspases/metabolismo , Movimento Celular/genética , Movimento Celular/imunologia , Citocinas/genética , Citocinas/metabolismo , Suscetibilidade a Doenças , Expressão Gênica , Fator Estimulador de Colônias de Granulócitos e Macrófagos/metabolismo , Humanos , Imunofenotipagem , Leucócitos Mononucleares/imunologia , Leucócitos Mononucleares/metabolismo , Camundongos , Camundongos Knockout , Células Mieloides/imunologia , Células Mieloides/metabolismo , Fagócitos/imunologia , Fagócitos/metabolismo , Transdução de Sinais
15.
Mol Cell Oncol ; 7(4): 1740541, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32944611

RESUMO

We recently demonstrated that post-translational modifications of the OTU deubiquitinase with linear linkage specificity (OTULIN) regulate its function in cell death. OTULIN hyper-phosphorylation promotes necroptosis by locking ring finger protein 31 (RNF31, also known as HOIP) away from the cylindromatosis (CYLD) complex, resulting in altered receptor interacting serine/threonine kinase 1 (RIPK1) ubiquitination. Further, we identified dual specificity phosphatase 14 (DUSP14) as an OTULIN phosphatase that limits necroptosis.

16.
J Biol Chem ; 295(16): 5216-5228, 2020 04 17.
Artigo em Inglês | MEDLINE | ID: mdl-32122970

RESUMO

The linear ubiquitin assembly complex (LUBAC) is an essential component of the innate and adaptive immune system. Modification of cellular substrates with linear polyubiquitin chains is a key regulatory step in signal transduction that impacts cell death and inflammatory signaling downstream of various innate immunity receptors. Loss-of-function mutations in the LUBAC components HOIP and HOIL-1 yield a systemic autoinflammatory disease in humans, whereas their genetic ablation is embryonically lethal in mice. Deficiency of the LUBAC adaptor protein Sharpin results in a multi-organ inflammatory disease in mice characterized by chronic proliferative dermatitis (cpdm), which is propagated by TNFR1-induced and RIPK1-mediated keratinocyte cell death. We have previously shown that caspase-1 and -11 promoted the dermatitis pathology of cpdm mice and mediated cell death in the skin. Here, we describe a reciprocal regulation of caspase-1 and LUBAC activities in keratinocytes. We show that LUBAC interacted with caspase-1 via HOIP and modified its CARD domain with linear polyubiquitin and that depletion of HOIP or Sharpin resulted in heightened caspase-1 activation and cell death in response to inflammasome activation, unlike what is observed in macrophages. Reciprocally, caspase-1, as well as caspase-8, regulated LUBAC activity by proteolytically processing HOIP at Asp-348 and Asp-387 during the execution of cell death. HOIP processing impeded substrate ubiquitination in the NF-κB pathway and resulted in enhanced apoptosis. These results highlight a regulatory mechanism underlying efficient apoptosis in keratinocytes and provide further evidence of a cross-talk between inflammatory and cell death pathways.


Assuntos
Caspase 1/metabolismo , Dermatite/metabolismo , Fatores de Transcrição/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinas/metabolismo , Sítios de Ligação , Morte Celular , Células HEK293 , Humanos , Inflamassomos/metabolismo , Queratinócitos/metabolismo , Ligação Proteica , Células THP-1 , Fatores de Transcrição/química , Ubiquitina-Proteína Ligases/química , Ubiquitinas/química
17.
Front Cell Infect Microbiol ; 10: 607650, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33585278

RESUMO

Macrophages are important effectors of tissue homeostasis, inflammation and host defense. They are equipped with an arsenal of pattern recognition receptors (PRRs) necessary to sense microbial- or danger-associated molecular patterns (MAMPs/DAMPs) and elicit rapid energetically costly innate immunity responses to protect the organism. The interaction between cellular metabolism and macrophage innate immunity is however not limited to answering the cell's energy demands. Mounting evidence now indicate that in response to bacterial sensing, macrophages undergo metabolic adaptations that contribute to the induction of innate immunity signaling and/or macrophage polarization. In particular, intermediates of the glycolysis pathway, the Tricarboxylic Acid (TCA) cycle, mitochondrial respiration, amino acid and lipid metabolism directly interact with and modulate macrophage effectors at the epigenetic, transcriptional and post-translational levels. Interestingly, some intracellular bacterial pathogens usurp macrophage metabolic pathways to attenuate anti-bacterial defenses. In this review, we highlight recent evidence describing such host-bacterial immunometabolic interactions.


Assuntos
Infecções Bacterianas , Macrófagos , Humanos , Imunidade Inata , Ativação de Macrófagos , Receptores de Reconhecimento de Padrão
18.
Cell Rep ; 29(11): 3652-3663.e5, 2019 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-31825842

RESUMO

Linear ubiquitination has emerged as an important post-translational modification that regulates NF-κB activation, inflammation, and cell death in both immune and non-immune compartments, including the skin. The deubiquitinase OTULIN specifically disassembles linear ubiquitin chains generated by the linear ubiquitin assembly complex (LUBAC) and is necessary to prevent embryonic lethality and autoinflammatory disease. Here, we dissect the direct role of OTULIN in cell death and find that OTULIN limits apoptosis and necroptosis in keratinocytes. During apoptosis, OTULIN is cleaved by capase-3 at Asp-31 into a C-terminal fragment that restricts caspase activation and cell death. During necroptosis, OTULIN is hyper-phosphorylated at Tyr-56, which modulates RIPK1 ubiquitin dynamics and promotes cell death. OTULIN Tyr-56 phosphorylation is counteracted by the activity of dual-specificity phosphatase 14 (DUSP14), which we identify as an OTULIN phosphatase that limits necroptosis. Our data provide evidence of dynamic post-translational modifications of OTULIN and highlight their importance in cell death outcome.


Assuntos
Apoptose , Endopeptidases/metabolismo , Necroptose , Processamento de Proteína Pós-Traducional , Ubiquitinas/metabolismo , Fosfatases de Especificidade Dupla/metabolismo , Células HEK293 , Humanos , Queratinócitos/metabolismo , Fosfatases da Proteína Quinase Ativada por Mitógeno/metabolismo , Fosforilação , Proteína Serina-Treonina Quinases de Interação com Receptores/metabolismo
19.
Sci Rep ; 8(1): 8446, 2018 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-29855523

RESUMO

Activation of the inflammasome pathway is crucial for effective intracellular host defense. The mitochondrial network plays an important role in inflammasome regulation but the mechanisms linking mitochondrial homeostasis to attenuation of inflammasome activation are not fully understood. Here, we report that the Parkinson's disease-associated mitochondrial serine protease HtrA2 restricts the activation of ASC-dependent NLRP3 and AIM2 inflammasomes, in a protease activity-dependent manner. Consistently, disruption of the protease activity of HtrA2 results in exacerbated NLRP3 and AIM2 inflammasome responses in macrophages ex vivo and systemically in vivo. Mechanistically, we show that the HtrA2 protease activity regulates autophagy and controls the magnitude and duration of inflammasome signaling by preventing prolonged accumulation of the inflammasome adaptor ASC. Our findings identify HtrA2 as a non-redundant mitochondrial quality control effector that keeps NLRP3 and AIM2 inflammasomes in check.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Serina Peptidase 2 de Requerimento de Alta Temperatura A/metabolismo , Inflamassomos/metabolismo , Mitocôndrias/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Animais , Autofagia , Células da Medula Óssea/citologia , Proteínas Adaptadoras de Sinalização CARD/metabolismo , Caspase 1/deficiência , Caspase 1/genética , Caspase 1/metabolismo , Proteínas de Ligação a DNA/antagonistas & inibidores , Serina Peptidase 2 de Requerimento de Alta Temperatura A/deficiência , Serina Peptidase 2 de Requerimento de Alta Temperatura A/genética , Proteínas Inibidoras de Apoptose/metabolismo , Interleucina-1beta/metabolismo , Lipopolissacarídeos/farmacologia , Macrófagos/citologia , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteína 3 que Contém Domínio de Pirina da Família NLR/antagonistas & inibidores
20.
Semin Cell Dev Biol ; 82: 137-149, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-29366812

RESUMO

The binary classification of mammalian caspases as either apoptotic or inflammatory is now obsolete. Emerging data indicate that all mammalian caspases are intricately involved in the regulation of inflammation and immunity. They participate in embryonic and adult tissue homeostasis, control leukocyte differentiation, activation and effector functions, and mediate innate and adaptive immunity signaling. Caspases also promote host resistance by regulating anti-oxidant defense and pathogen clearance through regulation of phagosomal maturation, actin dynamics and phagosome-lysosome fusion. Beyond apoptosis, they regulate inflammatory cell death, eliciting rapid pyroptosis of infected cells, while inhibiting necroptosis-mediated tissue destruction and chronic inflammation. In this review, we describe the cellular and molecular mechanisms underlying non-apoptotic functions of caspases in inflammation and immunity and provide an updated view of their functions as central regulators of tissue homeostasis and host defense.


Assuntos
Caspases/metabolismo , Imunidade Inata/imunologia , Inflamação/imunologia , Animais , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...