Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
BMC Plant Biol ; 24(1): 695, 2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-39044125

RESUMO

The bacterial blight of wheat is an important global disease causing a significant decline in crop yield. Nanotechnology offers a potential solution for managing plant diseases. Therefore, this research aimed to investigate the effectiveness of silver nanoparticles (AgNPs) in controlling bacterial blight in 27 locally grown wheat cultivars. The study examined the impact of AgNPs at three distinct time points: 1, 3, and 5 days after the onset of the disease. Biochemical assay revealed that one day after applying the disease stress, the Inia cultivar had the highest amount of soluble protein (55.60 µg.g-1FW) content in the treatment without AgNPs. The Azadi cultivar, without AgNPs treatment, had the lowest amount of soluble protein content (15.71 µg.g-1FW). The Tabasi cultivar had the highest activity of the superoxide dismutase (SOD) (61.62 mM.g-1FW) with the combination treatment of AgNPs. On the other hand, the Karchia cultivar had the lowest SOD activity (0.6 mM.g-1FW) in the treatment of disease without AgNPs. Furthermore, three days after the application of stress, the Mahdavi cultivar had the highest amount of soluble protein content (54.16 µg.g-1FW) in the treatment of disease without AgNPs. The Niknejad cultivar had the highest activity of the SOD (74.15 mM.g-1FW) with the combined treatment of the disease without AgNPs. The Kavir cultivar had the lowest SOD activity (1.95 mM.g-1FW) and the lowest peroxidase (POX) activity (0.241 mM g-1FW min-1) in the treatment of the disease with AgNPs. Five days after exposure to stress, the Mahooti cultivar had the highest SOD activity (88.12 mM.g-1FW) with the combined treatment of the disease with AgNPs, and the Karchia cultivar had the lowest SOD activity (2.39 mM.g-1FW) in the treatment of the disease with AgNPs. Further, the results indicated that exposure to AgNPs could improve the antioxidant properties of wheat seeds in blight-infected and disease-free conditions in some cultivars.


Assuntos
Nanopartículas Metálicas , Doenças das Plantas , Prata , Triticum , Triticum/microbiologia , Triticum/efeitos dos fármacos , Prata/farmacologia , Doenças das Plantas/microbiologia , Superóxido Dismutase/metabolismo , Proteínas de Plantas/metabolismo
2.
BMC Plant Biol ; 24(1): 670, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-39004723

RESUMO

The most effective strategy for managing wheat bacterial blight caused by Pseudomonas syringae pv. syringae is believed to be the use of resistant cultivars. Researching the correlation between molecular markers and stress resistance can expedite the plant breeding process. The current study aims to evaluate the response of 27 bread wheat cultivars to bacterial blight disease in order to identify resistant and susceptible cultivars and to pinpoint ISSR molecular markers associated with bacterial blight resistance genes. ISSR markers are recommended for assessing a plant's disease resistance. This experiment is focused on identifying ISSR molecular markers linked to bacterial blight resistance. After applying the bacterial solution to the leaves, we performed sampling to determine the infection percentage in the leaves at different intervals (7, 14, and 18 days after spraying). In most cultivars, the average leaf infection percentage decreased 18 days after spraying on young leaves. However, in some cultivars such as Niknegad, Darab2, and Zarin, leaf infection increased in older leaves and reached up to 100% necrosis. In our study, 12 ISSR primers generated a total of 170 bands, with 156 being polymorphic. The primers F10 and F5 showed the highest polymorphism, while the F7 primer exhibited the lowest polymorphism. Cluster analysis grouped these cultivars into four categories. The resistant group included Qods, Omid, and Atrak cultivars, while the semi-resistant and susceptible groups comprised the rest of the cultivars. Through binary logistic analysis, we identified three Super oxide dismutase-related genes that contribute to plant resistance to bacterial blight. These genes were linked to the F3, F5, and F12 primers in regions I (1500 bp), T (1000 bp), and G (850 bp), respectively. We also identified seven susceptibility-associated genes. Atrak, Omid, and Qods cultivars exhibited resistance against bacterial blight, and three genes associated with this resistance were linked to the F3, F5, and F12 primers. These markers can be used for screening or transferring tolerance to other wheat cultivars in breeding programs.


Assuntos
Resistência à Doença , Doenças das Plantas , Pseudomonas syringae , Triticum , Doenças das Plantas/microbiologia , Doenças das Plantas/genética , Triticum/genética , Triticum/microbiologia , Resistência à Doença/genética , Pseudomonas syringae/fisiologia , Marcadores Genéticos , Folhas de Planta/microbiologia , Folhas de Planta/genética , Modelos Logísticos
3.
Sci Rep ; 14(1): 5789, 2024 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-38461344

RESUMO

The production of surface compounds coated with active substances has gained significant attention in recent years. This study investigated the physical, mechanical, antioxidant, and antimicrobial properties of a composite made of starch and zinc oxide nanoparticles (ZnO NPs) containing various concentrations of Ferula gummosa essential oil (0.5%, 1%, and 1.5%). The addition of ZnO NPs improved the thickness, mechanical and microbial properties, and reduced the water vapor permeability of the starch active film. The addition of F. gummosa essential oil to the starch nanocomposite decreased the water vapor permeability from 6.25 to 5.63 g mm-2 d-1 kPa-1, but this decrease was significant only at the concentration of 1.5% of essential oils (p < 0.05). Adding 1.5% of F. gummosa essential oil to starch nanocomposite led to a decrease in Tensile Strength value, while an increase in Elongation at Break values was observed. The results of the antimicrobial activity of the nanocomposite revealed that the pure starch film did not show any lack of growth zone. The addition of ZnO NPs to the starch matrix resulted in antimicrobial activity on both studied bacteria (Staphylococcus aureus and Escherichia coli). The highest antimicrobial activity was observed in the starch/ZnO NPs film containing 1.5% essential oil with an inhibition zone of 340 mm2 on S. aureus. Antioxidant activity increased significantly with increasing concentration of F. gummosa essential oil (P < 0.05). The film containing 1.5% essential oil had the highest (50.5%) antioxidant activity. Coating also improved the chemical characteristics of fish fillet. In conclusion, the starch nanocomposite containing ZnO NPs and F. gummosa essential oil has the potential to be used in the aquatic packaging industry.


Assuntos
Anti-Infecciosos , Ferula , Nanopartículas , Óleos Voláteis , Óxido de Zinco , Animais , Óleos Voláteis/farmacologia , Óleos Voláteis/química , Óxido de Zinco/farmacologia , Óxido de Zinco/química , Antioxidantes/farmacologia , Antioxidantes/química , Staphylococcus aureus , Vapor , Anti-Infecciosos/farmacologia , Anti-Infecciosos/química , Amido/química , Escherichia coli , Nanopartículas/química
4.
Sci Rep ; 13(1): 21694, 2023 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-38066078

RESUMO

All elements of the pistachio tree are considered raw pistachio by-products. The soft hull makes up the majority of these by-products. It contains proteins, fats, minerals, vitamins, phenolics contents (TPC), and antioxidants. Early smiling pistachios are one of the most important sources of pistachio contamination with aflatoxin in the garden and processing stages. The present study aimed to evaluate pistachio hull essential oil (EO) composition, and antioxidant and antimicrobial properties under in vitro conditions. TPC, antioxidant, and antimicrobial activity were measured using the Folin-Ciocalteu reagent, 2,2-diphenyl-1-picrylhydrazyl (DPPH) free radical scavenging method, and serial dilution titration method, respectively. A gas chromatography system with a mass spectrometer (GC-MS) was utilized to determine the chemical components of the EO. The findings revealed that the quantity of TPC and anti-radical activity in IC50 were 245.43 mg gallic acid/mL and 206.32 µL/L, respectively. The free radical absorption activity of DPPH (%) increased with EO content. The inhibitory activity of EO on Staphylococcus aureus and Bacillus subtilis was much lower than that of streptomycin and penicillin. Aspergillus flavus was effectively inhibited by pistachio hull EO, comparable to fluconazole. The results obtained from GC-MS showed that the major compounds in pistachio hull essential oil include α-pinene (47.36%), terpinolene (10.57%), limonene (9.13%), and L-bornyl acetate (8.57%). The findings indicated that pistachio hull EO has potent antibacterial and antioxidant components and can be employed as a natural antimicrobial and antioxidant in food systems.


Assuntos
Anti-Infecciosos , Óleos Voláteis , Pistacia , Antioxidantes/farmacologia , Antioxidantes/química , Pistacia/química , Óleos Voláteis/farmacologia , Óleos Voláteis/química , Cromatografia Gasosa-Espectrometria de Massas , Anti-Infecciosos/farmacologia , Anti-Infecciosos/química , Radicais Livres , Testes de Sensibilidade Microbiana
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA