Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
1.
Cell Rep Med ; 5(4): 101479, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38518770

RESUMO

Immune checkpoint blockade (ICB) with PD-1/PD-L1 inhibition has revolutionized the treatment of non-small cell lung cancer (NSCLC). Durable responses, however, are observed only in a subpopulation of patients. Defective antigen presentation and an immunosuppressive tumor microenvironment (TME) can lead to deficient T cell recruitment and ICB resistance. We evaluate intratumoral (IT) vaccination with CXCL9- and CXCL10-engineered dendritic cells (CXCL9/10-DC) as a strategy to overcome resistance. IT CXCL9/10-DC leads to enhanced T cell infiltration and activation in the TME and tumor inhibition in murine NSCLC models. The antitumor efficacy of IT CXCL9/10-DC is dependent on CD4+ and CD8+ T cells, as well as CXCR3-dependent T cell trafficking from the lymph node. IT CXCL9/10-DC, in combination with ICB, overcomes resistance and establishes systemic tumor-specific immunity in murine models. These studies provide a mechanistic understanding of CXCL9/10-DC-mediated host immune activation and support clinical translation of IT CXCL9/10-DC to augment ICB efficacy in NSCLC.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Camundongos , Animais , Linfócitos T CD8-Positivos , Inibidores de Checkpoint Imunológico , Células Dendríticas , Microambiente Tumoral , Quimiocina CXCL9
2.
Cells ; 12(19)2023 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-37830618

RESUMO

Non-small-cell lung cancer (NSCLC) remains one of the leading causes of death worldwide. While NSCLCs possess antigens that can potentially elicit T cell responses, defective tumor antigen presentation and T cell activation hinder host anti-tumor immune responses. The NSCLC tumor microenvironment (TME) is composed of cellular and soluble mediators that can promote or combat tumor growth. The composition of the TME plays a critical role in promoting tumorigenesis and dictating anti-tumor immune responses to immunotherapy. Dendritic cells (DCs) are critical immune cells that activate anti-tumor T cell responses and sustain effector responses. DC vaccination is a promising cellular immunotherapy that has the potential to facilitate anti-tumor immune responses and transform the composition of the NSCLC TME via tumor antigen presentation and cell-cell communication. Here, we will review the features of the NSCLC TME with an emphasis on the immune cell phenotypes that directly interact with DCs. Additionally, we will summarize the major preclinical and clinical approaches for DC vaccine generation and examine how effective DC vaccination can transform the NSCLC TME toward a state of sustained anti-tumor immune signaling.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Neoplasias Pulmonares/metabolismo , Microambiente Tumoral , Antígenos de Neoplasias/metabolismo , Vacinação , Células Dendríticas
3.
J Immunother Cancer ; 11(9)2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37730274

RESUMO

BACKGROUND: Despite recent advances in immunotherapy, many patients with non-small cell lung cancer (NSCLC) do not respond to immune checkpoint inhibitors (ICI). Resistance to ICI may be driven by suboptimal priming of antitumor T lymphocytes due to poor antigen presentation as well as their exclusion and impairment by the immunosuppressive tumor microenvironment (TME). In a recent phase I trial in patients with NSCLC, in situ vaccination (ISV) with dendritic cells engineered to secrete CCL21 (CCL21-DC), a chemokine that facilitates the recruitment of T cells and DC, promoted T lymphocyte tumor infiltration and PD-L1 upregulation. METHODS: Murine models of NSCLC with distinct driver mutations (KrasG12D/P53+/-/Lkb1-/- (KPL); KrasG12D/P53+/- (KP); and KrasG12D (K)) and varying tumor mutational burden were used to evaluate the efficacy of combination therapy with CCL21-DC ISV plus ICI. Comprehensive analyses of longitudinal preclinical samples by flow cytometry, single cell RNA-sequencing (scRNA-seq) and whole-exome sequencing were performed to assess mechanisms of combination therapy. RESULTS: ISV with CCL21-DC sensitized immune-resistant murine NSCLCs to ICI and led to the establishment of tumor-specific immune memory. Immunophenotyping revealed that CCL21-DC obliterated tumor-promoting neutrophils, promoted sustained infiltration of CD8 cytolytic and CD4 Th1 lymphocytes and enriched progenitor T cells in the TME. Addition of ICI to CCL21-DC further enhanced the expansion and effector function of T cells both locally and systemically. Longitudinal evaluation of tumor mutation profiles revealed that CCL21-DC plus ICI induced immunoediting of tumor subclones, consistent with the broadening of tumor-specific T cell responses. CONCLUSIONS: CCL21-DC ISV synergizes with anti-PD-1 to eradicate murine NSCLC. Our data support the clinical application of CCL21-DC ISV in combination with checkpoint inhibition for patients with NSCLC.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Animais , Camundongos , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Proteínas Proto-Oncogênicas p21(ras) , Proteína Supressora de Tumor p53 , Neoplasias Pulmonares/tratamento farmacológico , Imunoterapia , Microambiente Tumoral , Quimiocina CCL21
4.
Respir Med Res ; 84: 101031, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37647739

RESUMO

BACKGROUND: Admission eosinopenia (<100 cells/µL) is associated with poor clinical outcomes in hospitalized COVID-19 patients. However, the effects of eosinophil recovery (defined as reaching ≥50 eosinophils/µL) during hospitalization on COVID-19 outcomes have been inconsistent. METHODS: The study included 1,831 patients admitted to UCLA hospitals between February 2020 and February 2021 with PCR-confirmed COVID-19. Using competing risk regression and modeling eosinophil recovery as a time-dependent covariate, we evaluated the longitudinal relationship between eosinophil recovery and in-hospital outcomes including ICU admission, need for mechanical ventilation, and in-hospital mortality. All analyses were adjusted for covariates including age, BMI, tobacco smoke exposure, comorbidities known to be risk factors for COVID-19 mortality, and treatments including dexamethasone and remdesivir. RESULTS: Eosinophil recovery was evaluated in patients with <50 eosinophils/µL on admission (n = 1282). These patients cumulatively amassed 11,633 hospital patient-days; 3,985 of those days qualified as eosinophil recovery events, which were represented by 781 patients achieving at least one instance of eosinophil recovery during hospitalization. Despite no significant difference in the rate of mechanical ventilation, eosinophil recoverers had significantly lower rates of in-hospital mortality (aHR: 0.44 [0.29, 0.65], P = 0.001) and ICU admission (aHR: 0.25 [0.11, 0.61], P = 0.002). CONCLUSION: Trending eosinophil counts during hospitalization is simple and can be performed in resource-limited healthcare settings to track the inflammatory status of a patient. Lack of eosinophil recovery events can identify those at risk for future progression to severe COVID.


Assuntos
COVID-19 , Eosinófilos , Humanos , COVID-19/epidemiologia , COVID-19/terapia , Mortalidade Hospitalar , Hospitalização , Estudos de Coortes , Unidades de Terapia Intensiva
5.
Cancer Res ; 83(19): 3305-3319, 2023 10 02.
Artigo em Inglês | MEDLINE | ID: mdl-37477508

RESUMO

A greater understanding of molecular, cellular, and immunological changes during the early stages of lung adenocarcinoma development could improve diagnostic and therapeutic approaches in patients with pulmonary nodules at risk for lung cancer. To elucidate the immunopathogenesis of early lung tumorigenesis, we evaluated surgically resected pulmonary nodules representing the spectrum of early lung adenocarcinoma as well as associated normal lung tissues using single-cell RNA sequencing and validated the results by flow cytometry and multiplex immunofluorescence (MIF). Single-cell transcriptomics revealed a significant decrease in gene expression associated with cytolytic activities of tumor-infiltrating natural killer and natural killer T cells. This was accompanied by a reduction in effector T cells and an increase of CD4+ regulatory T cells (Treg) in subsolid nodules. An independent set of resected pulmonary nodules consisting of both adenocarcinomas and associated premalignant lesions corroborated the early increment of Tregs in premalignant lesions compared with the associated normal lung tissues by MIF. Gene expression analysis indicated that cancer-associated alveolar type 2 cells and fibroblasts may contribute to the deregulation of the extracellular matrix, potentially affecting immune infiltration in subsolid nodules through ligand-receptor interactions. These findings suggest that there is a suppression of immune surveillance across the spectrum of early-stage lung adenocarcinoma. SIGNIFICANCE: Analysis of a spectrum of subsolid pulmonary nodules by single-cell RNA sequencing provides insights into the immune regulation and cell-cell interactions in the tumor microenvironment during early lung tumor development.


Assuntos
Adenocarcinoma de Pulmão , Adenocarcinoma , Neoplasias Pulmonares , Nódulos Pulmonares Múltiplos , Humanos , Monitorização Imunológica , Tomografia Computadorizada por Raios X/métodos , Adenocarcinoma de Pulmão/genética , Adenocarcinoma de Pulmão/patologia , Neoplasias Pulmonares/patologia , Adenocarcinoma/genética , Adenocarcinoma/patologia , Microambiente Tumoral
6.
Res Sq ; 2023 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-38196658

RESUMO

Coronavirus disease 2019 (COVID-19) poses significant risks for solid organ transplant (SOT) recipients, who have atypical but poorly characterized immune responses to SARS-CoV-2 infection. We sought to understand and the host immunologic and microbial features of COVID-19 in SOT recipients by leveraging a prospective multicenter cohort of 1164 hospitalized patients. Using multi-omic immuoprofiling, we studied 86 SOT recipients in this cohort, who were age- and sex-matched 2:1 with 172 non-SOT controls. PBMC and nasal transcriptional profiling unexpectedly demonstrated upregulation of innate immune pathways related to interferon (IFN) and Toll-like receptor signaling, and complement activation, in SOT recipients. Longitudinal analyses across the first 30-days post-hospitalization demonstrated persistent upregulation of these innate immunity pathways in SOT recipients. The levels of several proinflammatory serum chemokines, such as CX3CL1 and KITLG, were also higher in SOT recipients at the time of hospitalization, although IFN-gamma levels were lower. We observed differential dynamics of CXCL11, which remained persistently elevated in SOT recipients over the course of hospitalization. Nasal microbiome alpha diversity was higher in SOT recipients versus controls, but no differences in taxonomic abundance beyond SARS-CoV-2 were observed. SOT recipients had higher nasal SARS-CoV-2 viral loads and impaired viral clearance compared to controls. Antibody analysis demonstrated lower anti-SARS-CoV-2 spike IgG levels in SOT recipients upon hospitalization, but no distinctions over time compared to controls. Mass cytometry demonstrated marked differences in blood immune cell populations, with SOT recipients exhibiting decreased plasmablasts and transitional B cells, and increased senescent T cells. Severe disease in SOT recipients was characterized by a less robust induction of inflammatory chemokines, such as IL-6 and CCL7, and a more subtle proinflammatory transcriptional response in the blood and airway. Together, our study reveals distinct immune features and altered viral dynamics in SOT recipients compared to non-SOT controls. We unexpectedly find that SOT recipients exhibit an augmented, predominantly innate immune response in both the blood and upper respiratory tract that remains relatively stable across disease severity, in contrast to non-SOT controls. These findings may relate to the paradoxical observation that SOT recipients have similar COVID-19 mortality rates versus the general population, despite being more susceptible to SARS-CoV-2 infection, remaining infectious longer, and having higher rates of hospitalization. In summary, we find that COVID-19 in SOT recipients is characterized by a biologically distinct immune state, suggesting the potential for unique prognostic biomarkers and therapeutic approaches in this vulnerable population.

7.
Med Sci (Basel) ; 10(3)2022 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-35893116

RESUMO

Lung adenocarcinoma with lepidic growth pattern (LPA) is characterized by tumor cell proliferation along intact alveolar walls, and further classified as adenocarcinoma in situ (AIS), minimally invasive adenocarcinoma (MIA) and invasive lepidic predominant adenocarcinoma (iLPA). Accurate diagnosis of lepidic lesions is critical for appropriate prognostication and management as five-year survival in patients with iLPA is lower than in those with AIS and MIA. We aimed to evaluate the accuracy of CT-guided core needle lung biopsy classifying LPA lesions and identify clinical and radiologic predictors of invasive disease in biopsied lesions. Thirty-four cases of adenocarcinoma with non-invasive lepidic growth pattern on core biopsy pathology that subsequently were resected between 2011 and 2018 were identified. Invasive LPA vs. non-invasive LPA (AIS or MIA) was defined based on explant pathology. Histopathology of core biopsy and resected tumor specimens was compared for concordance, and clinical, radiologic and pathologic variables were analyzed to assess for correlation with invasive disease. The majority of explanted tumors (70.6%) revealed invasive disease. Asian race (p = 0.03), history of extrathoracic malignancy (p = 0.02) and absence of smoking history (p = 0.03) were associated with invasive disease. CT-measured tumor size was not associated with invasiveness (p = 0.15). CT appearance of density (p = 0.61), shape (p = 0.78), and margin (p = 0.24) did not demonstrate a significant difference between the two subgroups. Invasiveness of tumors with lepidic growth patterns can be underestimated on transthoracic core needle biopsies. Asian race, absence of smoking, and history of extrathoracic malignancy were associated with invasive disease.


Assuntos
Adenocarcinoma in Situ , Adenocarcinoma de Pulmão , Adenocarcinoma , Neoplasias Pulmonares , Adenocarcinoma/diagnóstico por imagem , Adenocarcinoma/patologia , Adenocarcinoma in Situ/patologia , Adenocarcinoma de Pulmão/diagnóstico por imagem , Adenocarcinoma de Pulmão/patologia , Humanos , Pulmão/diagnóstico por imagem , Pulmão/patologia , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/cirurgia , Invasividade Neoplásica/patologia , Estadiamento de Neoplasias
8.
Cancer Res ; 81(12): 3295-3308, 2021 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-33853830

RESUMO

LKB1 inactivating mutations are commonly observed in patients with KRAS-mutant non-small cell lung cancer (NSCLC). Although treatment of NSCLC with immune checkpoint inhibitors (ICI) has resulted in improved overall survival in a subset of patients, studies have revealed that co-occurring KRAS/LKB1 mutations drive primary resistance to ICIs in NSCLC. Effective therapeutic options that overcome ICI resistance in LKB1-mutant NSCLC are limited. Here, we report that loss of LKB1 results in increased secretion of the C-X-C motif (CXC) chemokines with an NH2-terminal Glu-Leu-Arg (ELR) motif in premalignant and cancerous cells, as well as in genetically engineered murine models (GEMM) of NSCLC. Heightened levels of ELR+ CXC chemokines in LKB1-deficient murine models of NSCLC positively correlated with increased abundance of granulocytic myeloid-derived suppressor cells (G-MDSC) locally within the tumor microenvironment and systemically in peripheral blood and spleen. Depletion of G-MDSCs with antibody or functional inhibition via all-trans-retinoic acid (ATRA) led to enhanced antitumor T-cell responses and sensitized LKB1-deficent murine tumors to PD-1 blockade. Combination therapy with anti-PD-1 and ATRA improved local and systemic T-cell proliferation and generated tumor-specific immunity. Our findings implicate ELR+ CXC chemokine-mediated enrichment of G-MDSCs as a potential mediator of immunosuppression in LKB1-deficient NSCLC and provide a rationale for using ATRA in combination with anti-PD-1 therapy in patients with LKB1-deficient NSCLC refractory to ICIs. SIGNIFICANCE: These findings show that accumulation of myeloid-derived suppressor cells in LKB1-deficient non-small cell lung cancer can be overcome via treatment with all-trans-retinoic acid, sensitizing tumors to immunotherapy.


Assuntos
Quinases Proteína-Quinases Ativadas por AMP/deficiência , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Resistencia a Medicamentos Antineoplásicos , Granulócitos/imunologia , Inibidores de Checkpoint Imunológico/farmacologia , Neoplasias Pulmonares/tratamento farmacológico , Células Supressoras Mieloides/imunologia , Animais , Apoptose , Carcinoma Pulmonar de Células não Pequenas/imunologia , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Carcinoma Pulmonar de Células não Pequenas/patologia , Proliferação de Células , Humanos , Neoplasias Pulmonares/imunologia , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos NOD , Camundongos SCID , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
9.
Cancer Immunol Immunother ; 70(8): 2389-2400, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33507343

RESUMO

Conditional genetically engineered mouse models (GEMMs) of non-small cell lung cancer (NSCLC) harbor common oncogenic driver mutations of the disease, but in contrast to human NSCLC these models possess low tumor mutational burden (TMB). As a result, these models often lack tumor antigens that can elicit host adaptive immune responses, which limits their utility in immunotherapy studies. Here, we establish Kras-mutant murine models of NSCLC bearing the common driver mutations associated with the disease and increased TMB, by in vitro exposure of cell lines derived from GEMMs of NSCLC [KrasG12D (K), KrasG12DTp53-/-(KP), KrasG12DTp53+/-Lkb1-/- (KPL)] to the alkylating agent N-methyl-N-nitrosourea (MNU). Increasing the TMB enhanced host anti-tumor T cell responses and improved anti-PD-1 efficacy in syngeneic models across all genetic backgrounds. However, limited anti-PD-1 efficacy was observed in the KPL cell lines with increased TMB, which possessed a distinct immunosuppressed tumor microenvironment (TME) primarily composed of granulocytic myeloid-derived suppressor cells (G-MDSCs). This KPL phenotype is consistent with findings in human KRAS-mutant NSCLC where LKB1 loss is a driver of primary resistance to PD-1 blockade. In summary, these novel Kras-mutant NSCLC murine models with known driver mutations and increased TMB have distinct TMEs and recapitulate the therapeutic vulnerabilities of human NSCLC. We anticipate that these immunogenic models will facilitate the development of innovative immunotherapies in NSCLC.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/genética , Neoplasias Pulmonares/genética , Mutação/genética , Proteínas Proto-Oncogênicas p21(ras)/genética , Animais , Antígeno B7-H1/genética , Biomarcadores Tumorais/genética , Linhagem Celular Tumoral , Modelos Animais de Doenças , Camundongos , Proteínas Serina-Treonina Quinases/genética , Microambiente Tumoral/genética , Proteína Supressora de Tumor p53/genética
10.
Open Forum Infect Dis ; 7(11): ofaa424, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33204749

RESUMO

BACKGROUND: Interleukin-6 blockade (IL-6) has become a focus of therapeutic investigation for the coronavirus disease 2019 (COVID-19). METHODS: We report a case of a 34-year-old with COVID-19 pneumonia receiving an IL-6 receptor antagonist (IL-6Ra) who developed spontaneous colonic perforation. This perforation occurred despite a benign abdominal exam and in the absence of other known risk factors associated with colonic perforation. RESULTS: Examination of the colon by electron microscopy revealed numerous intact severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virions abutting the microvilli of the colonic mucosa. Multiplex immunofluorescent staining revealed the presence of the SARS-CoV-2 spike protein on the brush borders of colonic enterocytes that expressed angiotensin-converting enzyme 2. However, no viral particles were observed within the enterocytes to suggest direct viral injury as the cause of colonic perforation. CONCLUSIONS: These data and absence of known risk factors for spontaneous colonic perforation implicate IL-6Ra therapy as the potential mediator of colonic injury in this case. Furthermore, this report provides the first in situ visual evidence of the virus in the colon of a patient presenting with colonic perforation adding to growing evidence that intact infectious virus can be present in the stool.

12.
Clin Chest Med ; 41(1): 25-38, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32008627

RESUMO

Lung cancer is a heterogeneous disease with abundant genomic alterations. Chronic dysregulated airway inflammation facilitates lung tumorigenesis. In contrast, antitumor host immune responses apply continuous selective pressure on the tumor cells during the evolutionary course of the disease. Unprecedented advances in integrative genomic, epigenomic, and cellular profiling of lung cancer and the tumor microenvironment are enhancing the understanding of pulmonary tumorigenesis. This understanding in turn has led to advancements in lung cancer prevention and early detection strategies, and the development of effective targeted therapies and immunotherapies with survival benefit in selected patients.


Assuntos
Imunoterapia/métodos , Neoplasias Pulmonares/diagnóstico , Neoplasias Pulmonares/prevenção & controle , Neoplasias Pulmonares/terapia , Humanos
13.
Sci Rep ; 10(1): 377, 2020 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-31941995

RESUMO

Chronic inflammation facilitates tumor progression. We discovered that a subset of non-small cell lung cancer cells underwent a gradually progressing epithelial-to-mesenchymal (EMT) phenotype following a 21-day exposure to IL-1ß, an abundant proinflammatory cytokine in the at-risk for lung cancer pulmonary and the lung tumor microenvironments. Pathway analysis of the gene expression profile and in vitro functional studies revealed that the EMT and EMT-associated phenotypes, including enhanced cell invasion, PD-L1 upregulation, and chemoresistance, were sustained in the absence of continuous IL-1ß exposure. We referred to this phenomenon as EMT memory. Utilizing a doxycycline-controlled SLUG expression system, we found that high expression of the transcription factor SLUG was indispensable for the establishment of EMT memory. High SLUG expression in tumors of lung cancer patients was associated with poor survival. Chemical or genetic inhibition of SLUG upregulation prevented EMT following the acute IL-1ß exposure but did not reverse EMT memory. Chromatin immunoprecipitation and methylation-specific PCR further revealed a SLUG-mediated temporal regulation of epigenetic modifications, including accumulation of H3K27, H3K9, and DNA methylation, in the CDH1 (E-cadherin) promoter following the chronic IL-1ß exposure. Chemical inhibition of DNA methylation not only restored E-cadherin expression in EMT memory, but also primed cells for chemotherapy-induced apoptosis.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/patologia , Epigênese Genética , Transição Epitelial-Mesenquimal , Memória Imunológica/imunologia , Inflamação/imunologia , Interleucina-1beta/metabolismo , Antígenos CD/genética , Antígenos CD/metabolismo , Caderinas/genética , Caderinas/metabolismo , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/imunologia , Metilação de DNA , Regulação Neoplásica da Expressão Gênica , Humanos , Memória Imunológica/genética , Inflamação/genética , Interleucina-1beta/genética , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/imunologia , Neoplasias Pulmonares/patologia , Fenótipo , Células Tumorais Cultivadas
14.
Cancer Res ; 79(19): 5022-5033, 2019 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-31142513

RESUMO

Epithelial cells in the field of lung injury can give rise to distinct premalignant lesions that may bear unique genetic aberrations. A subset of these lesions may escape immune surveillance and progress to invasive cancer; however, the mutational landscape that may predict progression has not been determined. Knowledge of premalignant lesion composition and the associated microenvironment is critical for understanding tumorigenesis and the development of effective preventive and interception strategies. To identify somatic mutations and the extent of immune cell infiltration in adenomatous premalignancy and associated lung adenocarcinomas, we sequenced exomes from 41 lung cancer resection specimens, including 89 premalignant atypical adenomatous hyperplasia lesions, 15 adenocarcinomas in situ, and 55 invasive adenocarcinomas and their adjacent normal lung tissues. We defined nonsynonymous somatic mutations occurring in both premalignancy and the associated tumor as progression-associated mutations whose predicted neoantigens were highly correlated with infiltration of CD8+ and CD4+ T cells as well as upregulation of PD-L1 in premalignant lesions, suggesting the presence of an adaptive immune response to these neoantigens. Each patient had a unique repertoire of somatic mutations and associated neoantigens. Collectively, these results provide evidence for mutational heterogeneity, pathway dysregulation, and immune recognition in pulmonary premalignancy.Significance: These findings identify progression-associated somatic mutations, oncogenic pathways, and association between the mutational landscape and adaptive immune responses in adenomatous premalignancy.See related commentary by Merrick, p. 4811.


Assuntos
Adenocarcinoma , Adenoma , Neoplasias Pulmonares , Lesões Pré-Cancerosas , Genômica , Humanos , Microambiente Tumoral
16.
Sci Rep ; 8(1): 9032, 2018 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-29899427

RESUMO

Having demonstrated that apolipoprotein A-I (apoA-I) mimetic peptides ameliorate cancer in mouse models, we sought to determine the mechanism for the anti-tumorigenic function of these peptides. CT-26 cells (colon cancer cells that implant and grow into tumors in the lungs) were injected into wild-type BALB/c mice. The day after injection, mice were either continued on chow or switched to chow containing 0.06% of a concentrate of transgenic tomatoes expressing the apoA-I mimetic peptide 6F (Tg6F). After four weeks, the number of lung tumors was significantly lower in Tg6F-fed mice. Gene expression array analyses of jejunum and lung identified Notch pathway genes significantly upregulated, whereas osteopontin (Spp1) was significantly downregulated by Tg6F in both jejunum and lung. In jejunum, Tg6F increased protein levels for Notch1, Notch2, Dll1, and Dll4. In lung, Tg6F increased protein levels for Notch1 and Dll4 and decreased Spp1. Tg6F reduced oxidized phospholipid levels (E06 immunoreactivity) and reduced 25-hydroxycholesterol (25-OHC) levels, which are known to inhibit Notch1 and induce Spp1, respectively. Notch pathway promotes anti-tumorigenic patrolling monocytes, while Spp1 facilitates pro-tumorigenic myeloid derived suppressor cells (MDSCs) formation. Tg6F-fed mice had higher numbers of patrolling monocytes in jejunum and in lung (p < 0.02), and lower plasma levels of Spp1 with reduced numbers of MDSCs in jejunum and in lung (p < 0.03). We conclude that Tg6F alters levels of specific oxidized lipids and 25-OHC to modulate Notch pathways and Spp1, which alter small intestine immune cells, leading to similar changes in lung that reduce tumor burden.


Assuntos
Apolipoproteína A-I/metabolismo , Neoplasias Pulmonares/prevenção & controle , Neoplasias Experimentais/tratamento farmacológico , Peptídeos/farmacologia , Carga Tumoral/efeitos dos fármacos , Animais , Apolipoproteína A-I/química , Linhagem Celular Tumoral , Perfilação da Expressão Gênica/métodos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Jejuno/efeitos dos fármacos , Jejuno/metabolismo , Jejuno/patologia , Pulmão/efeitos dos fármacos , Pulmão/metabolismo , Pulmão/patologia , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/secundário , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Neoplasias Experimentais/patologia , Receptores Notch/genética , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Carga Tumoral/genética
18.
Clin Cancer Res ; 23(16): 4556-4568, 2017 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-28468947

RESUMO

Purpose: A phase I study was conducted to determine safety, clinical efficacy, and antitumor immune responses in patients with advanced non-small cell lung carcinoma (NSCLC) following intratumoral administration of autologous dendritic cells (DC) transduced with an adenoviral (Ad) vector expressing the CCL21 gene (Ad-CCL21-DC). We evaluated safety and tumor antigen-specific immune responses following in situ vaccination (ClinicalTrials.gov: NCT01574222).Experimental Design: Sixteen stage IIIB/IV NSCLC subjects received two vaccinations (1 × 106, 5 × 106, 1 × 107, or 3 × 107 DCs/injection) by CT- or bronchoscopic-guided intratumoral injections (days 0 and 7). Immune responses were assessed by tumor antigen-specific peripheral blood lymphocyte induction of IFNγ in ELISPOT assays. Tumor biopsies were evaluated for CD8+ T cells by IHC and for PD-L1 expression by IHC and real-time PCR (RT-PCR).Results: Twenty-five percent (4/16) of patients had stable disease at day 56. Median survival was 3.9 months. ELISPOT assays revealed 6 of 16 patients had systemic responses against tumor-associated antigens (TAA). Tumor CD8+ T-cell infiltration was induced in 54% of subjects (7/13; 3.4-fold average increase in the number of CD8+ T cells per mm2). Patients with increased CD8+ T cells following vaccination showed significantly increased PD-L1 mRNA expression.Conclusions: Intratumoral vaccination with Ad-CCL21-DC resulted in (i) induction of systemic tumor antigen-specific immune responses; (ii) enhanced tumor CD8+ T-cell infiltration; and (iii) increased tumor PD-L1 expression. Future studies will evaluate the role of combination therapies with PD-1/PD-L1 checkpoint inhibition combined with DC-CCL21 in situ vaccination. Clin Cancer Res; 23(16); 4556-68. ©2017 AACR.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Carcinoma Pulmonar de Células não Pequenas/terapia , Quimiocina CCL21/imunologia , Células Dendríticas/imunologia , Imunoterapia Adotiva/métodos , Neoplasias Pulmonares/terapia , Adulto , Idoso , Antígeno B7-H1/genética , Antígeno B7-H1/imunologia , Antígeno B7-H1/metabolismo , Linfócitos T CD8-Positivos/metabolismo , Vacinas Anticâncer/administração & dosagem , Vacinas Anticâncer/imunologia , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/imunologia , Quimiocina CCL21/genética , Estudos de Coortes , Células Dendríticas/metabolismo , Células Dendríticas/transplante , Dispneia/etiologia , Feminino , Humanos , Imunoterapia Adotiva/efeitos adversos , Injeções Intralesionais , Interferon gama/imunologia , Interferon gama/metabolismo , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/imunologia , Masculino , Pessoa de Meia-Idade , Debilidade Muscular/etiologia , Dor/etiologia
19.
Org Lett ; 12(12): 2872-5, 2010 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-20499854

RESUMO

A non-aldol aldol-cuprate opening generates the polypropionate 11 from the epoxy ether 14 in eight steps as a single diastereomer. A highly stereoselective aldol reaction of 8 with 9 gives the aldol product 7 in high yield and excellent diastereoselectivity, due to double stereodifferentiation. This compound was used for an efficient synthesis of the natural product auripyrone B 2 in only 20 steps and 8% overall yield from 14 using a late-stage spiroketalization onto a stable hemiketal as the final key step.


Assuntos
Produtos Biológicos/síntese química , Pironas/síntese química , Compostos de Espiro/síntese química , Produtos Biológicos/química , Catálise , Estrutura Molecular , Ressonância Magnética Nuclear Biomolecular , Pironas/química , Compostos de Espiro/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...