Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nanomaterials (Basel) ; 12(7)2022 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-35407161

RESUMO

This paper summarizes some of the essential aspects for the fabrication of functional devices from bottom-up silicon nanowires. In a first part, the different ways of exploiting nanowires in functional devices, from single nanowires to large assemblies of nanowires such as nanonets (two-dimensional arrays of randomly oriented nanowires), are briefly reviewed. Subsequently, the main properties of nanowires are discussed followed by those of nanonets that benefit from the large numbers of nanowires involved. After describing the main techniques used for the growth of nanowires, in the context of functional device fabrication, the different techniques used for nanowire manipulation are largely presented as they constitute one of the first fundamental steps that allows the nanowire positioning necessary to start the integration process. The advantages and disadvantages of each of these manipulation techniques are discussed. Then, the main families of nanowire-based transistors are presented; their most common integration routes and the electrical performance of the resulting devices are also presented and compared in order to highlight the relevance of these different geometries. Because they can be bottlenecks, the key technological elements necessary for the integration of silicon nanowires are detailed: the sintering technique, the importance of surface and interface engineering, and the key role of silicidation for good device performance. Finally the main application areas for these silicon nanowire devices are reviewed.

2.
Nanomaterials (Basel) ; 12(7)2022 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-35407187

RESUMO

The formation of nanowires by chemical bath deposition is of great interest for a wide variety of optoelectronic, piezoelectric, and sensing devices, from which the theoretical description of their elongation process has emerged as a critical issue. Despite its strong influence on the nanowire growth kinetics, reactor size has typically not been taken into account in the theoretical modeling developed so far. We report a new theoretical description of the axial growth rate of nanowires in dynamic conditions based on the solution of Fick's diffusion equations, implementing a sealed reactor of finite height as a varying parameter. The theoretical model is applied in various chemical bath deposition conditions in the case of the growth of ZnO nanowires, from which the influence of the reactor height is investigated and compared to experimental data. In particular, it is found that the use of reactor heights smaller than 2 cm significantly decreases the ZnO nanowires' axial growth rate in typical experimental conditions due to the faster depletion of reactants. The present approach is further used predictively, showing its high potential for the design of batch reactors for a wide variety of chemical precursors and semiconductor materials in applied research and industrial production.

3.
Nanotechnology ; 33(24)2022 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-35263731

RESUMO

We report on the influence of the liquid droplet composition on the Sn incorporation in GeSn nanowires (NWs) grown by the vapor-liquid-solid (VLS) mechanism with different catalysts. The variation of the NW growth rate and morphology with the growth temperature is investigated and 400 °C is identified as the best temperature to grow the longest untapered NWs with a growth rate of 520 nm min-1. When GeSn NWs are grown with pure Au droplets, we observe a core-shell like structure with a low Sn concentration of less than 2% in the NW core regardless of the growth temperature. We then investigate the impact of adding different fractions of Ag, Al, Ga and Si to Au catalyst on the incorporation of Sn. A significant improvement of Sn incorporation up to 9% is obtained using 75:25 Au-Al catalyst, with a high degree of spatial homogeneity across the NW volume. Thermodynamic model based on the energy minimization at the solid-liquid interface is developed, showing a good correlation with the data. These results can be useful for obtaining technologically important GeSn material with a high Sn content and, more generally, for tuning the composition of VLS NWs in other material systems.

4.
Inorg Chem ; 60(3): 1612-1623, 2021 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-33444002

RESUMO

The controlled incorporation of dopants like copper into ZnO nanowires (NWs) grown by chemical bath deposition (CBD) is still challenging despite its critical importance for the development of piezoelectric devices. In this context, the effects of the addition of copper nitrate during the CBD of ZnO NWs grown on Au seed layers are investigated in detail, where zinc nitrate and hexamethylenetetramine are used as standard chemical precursors and ammonia as an additive to tune the pH. By combining thermodynamic simulations with chemical and structural analyses, we show that copper oxide nanocrystals simultaneously form with ZnO NWs during the CBD process in the low-pH region associated with large supersaturation of Cu species. The Cu(II) and Zn(II) speciation diagrams reveal that both species show very similar behaviors, as they predominantly form either X2+ ions (with X = Cu or Zn) or X(NH3)42+ ion complexes, depending on the pH value. Owing to their similar ionic structures, Cu2+ and Cu(NH3)42+ ions preferentially formed in the low- and high-pH regions, respectively, are able to compete with the corresponding Zn2+ and Zn(NH3)42+ ions to adsorb on the c-plane top facets of ZnO NWs despite repulsive electrostatic interactions, yielding the significant incorporation of Cu. At the highest pH value, additional attractive electrostatic interactions between the Cu(NH3)42+ ion complexes and negatively charged c-plane top facets further enhance the incorporation of Cu into ZnO NWs. The present findings provide a deep insight into the physicochemical processes at work during the CBD of ZnO NWs following the addition of copper nitrate, as well as a detailed analysis of the incorporation mechanisms of Cu into ZnO NWs, which are considered beyond the only electrostatic forces usually driving the incorporation of dopants such as Al and Ga.

5.
Nanomaterials (Basel) ; 10(12)2020 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-33297597

RESUMO

The epitaxy of III-V semiconductors on silicon substrates remains challenging because of lattice parameter and material polarity differences. In this work, we report on the Metal Organic Chemical Vapor Deposition (MOCVD) and characterization of InAs/GaAs Quantum Dots (QDs) epitaxially grown on quasi-nominal 300 mm Ge/Si(001) and GaAs(001) substrates. QD properties were studied by Atomic Force Microscopy (AFM) and Photoluminescence (PL) spectroscopy. A wafer level µPL mapping of the entire 300 mm Ge/Si substrate shows the homogeneity of the three-stacked InAs QDs emitting at 1.30 ± 0.04 µm at room temperature. The correlation between PL spectroscopy and numerical modeling revealed, in accordance with transmission electron microscopy images, that buried QDs had a truncated pyramidal shape with base sides and heights around 29 and 4 nm, respectively. InAs QDs on Ge/Si substrate had the same shape as QDs on GaAs substrates, with a slightly increased size and reduced luminescence intensity. Our results suggest that 1.3 µm emitting InAs QDs quantum dots can be successfully grown on CMOS compatible Ge/Si substrates.

6.
ACS Appl Nano Mater ; 3(10): 10427-10436, 2020 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-33134884

RESUMO

While reversibility is a fundamental concept in thermodynamics, most reactions are not readily reversible, especially in solid-state physics. For example, thermal diffusion is a widely known concept, used among others to inject dopants into the substitutional positions in the matrix and improve device properties. Typically, such a diffusion process will create a concentration gradient extending over increasingly large regions, without possibility to reverse this effect. On the other hand, while the bottom-up growth of semiconducting nanowires is interesting, it can still be difficult to fabricate axial heterostructures with high control. In this paper, we report a thermally assisted partially reversible thermal diffusion process occurring in the solid-state reaction between an Al metal pad and a Si x Ge1-x alloy nanowire observed by in situ transmission electron microscopy. The thermally assisted reaction results in the creation of a Si-rich region sandwiched between the reacted Al and unreacted Si x Ge1-x part, forming an axial Al/Si/Si x Ge1-x heterostructure. Upon heating or (slow) cooling, the Al metal can repeatably move in and out of the Si x Ge1-x alloy nanowire while maintaining the rodlike geometry and crystallinity, allowing to fabricate and contact nanowire heterostructures in a reversible way in a single process step, compatible with current Si-based technology. This interesting system is promising for various applications, such as phase change memories in an all crystalline system with integrated contacts as well as Si/Si x Ge1-x /Si heterostructures for near-infrared sensing applications.

7.
Nanomaterials (Basel) ; 10(9)2020 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-32942692

RESUMO

Field effect transistors (FETs) based on networks of randomly oriented Si nanowires (Si nanonets or Si NNs) were biomodified using Thrombin Binding Aptamer (TBA-15) probe with the final objective to sense thrombin by electrical detection. In this work, the impact of the biomodification on the electrical properties of the Si NN-FETs was studied. First, the results that were obtained for the optimization of the (3-Glycidyloxypropyl)trimethoxysilane (GOPS)-based biofunctionalization process by using UV radiation are reported. The biofunctionalized devices were analyzed by atomic force microscopy (AFM) and scanning transmission electron microscopy (STEM), proving that TBA-15 probes were properly grafted on the surface of the devices, and by means of epifluorescence microscopy it was possible to demonstrate that the UV-assisted GOPS-based functionalization notably improves the homogeneity of the surface DNA distribution. Later, the electrical characteristics of 80 devices were analyzed before and after the biofunctionalization process, indicating that the results are highly dependent on the experimental protocol. We found that the TBA-15 hybridization capacity with its complementary strand is time dependent and that the transfer characteristics of the Si NN-FETs obtained after the TBA-15 probe grafting are also time dependent. These results help to elucidate and define the experimental precautions that must be taken into account to fabricate reproducible devices.

8.
ACS Appl Mater Interfaces ; 12(35): 39870-39880, 2020 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-32805854

RESUMO

In recent years, plasma enhanced atomic layer deposition (PEALD) has emerged as a key method for the growth of conformal and homogeneous aluminum nitride (AlN) films at the nanoscale. In this work, the utilized PEALD reactor was equipped not only with a traditional remote Inductively Coupled Plasma source but also with an innovative additional power supply connected to the substrate holder. Thus, we investigate here the substrate biasing effect on AlN film quality deposited on (100) silicon. We report that by adjusting the ion energy via substrate biasing, the AlN film quality can be significantly improved. Indeed, compared to films commonly deposited without bias, AlN deposited with a platen power of 5 W displays a 14% increase in the number of N-Al bonds according to X-ray spectroscopy analysis. Moreover, after having integrated them into Metal-AlN-Si capacitors, the 5 W AlN film exhibits a permittivity increase from 4.5 to 7.0 along with a drastic drop of leakage current density of more than 5 orders of magnitude. The use of substrate biasing during PEALD is thereby a promising strategy for the improvement of AlN film quality.

9.
Nanotechnology ; 31(40): 405602, 2020 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-32503017

RESUMO

It is well-known that the chemical potential which drives the vapor-liquid-solid growth of semiconductor nanowires is strongly affected by the liquid phase composition. Here, we investigate theoretically how the droplet composition influences the nucleation of Au-catalyzed GeSn nanowires on Ge(111) and Si(111) substrates. We compare the chemical potentials in an Au-Ge-Sn catalyst droplet before and after adding Ga and/or Si atoms. It is found that the presence of these atoms enhances the nucleation rate of nanowires on both substrates. Theoretical results are compared to experimental data on GeSn nanowires grown in a hot-wall reduced pressure chemical vapor deposition reactor. It is shown that the intentional addition of Ga in the de-wetting step improves the uniformity of the nanowire dimensions and yields higher density of nanowires over Ge(111) substrates. The nanowire growth on Si(111) substrate occurs only when Ga and/or Si are added to Au droplets. These results show that controlling the composition of the catalyst droplet is crucial for improving the quality of GeSn nanowires.

10.
ACS Appl Mater Interfaces ; 12(26): 29583-29593, 2020 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-32490666

RESUMO

ZnO thin films and nanostructures have received increasing interest in the field of piezoelectricity over the last decade, but their formation mechanisms on silicon when using pulsed-liquid injection metal-organic chemical vapor deposition (PLI-MOCVD) are still open to a large extent. Also, the effects of their morphology, dimensions, polarity, and electrical properties on their piezoelectric properties have not been completely decoupled yet. By only tuning the growth temperature from 400 to 750 °C while fixing the other growth conditions, the morphology transition of ZnO deposits on silicon from stacked thin films to nanowires through columnar thin films is shown. A detailed analysis of their formation mechanisms is further provided. The present transition is associated with strong enhancement of their crystallinity and growth texture along the c-axis together with a massive relaxation of the strain in nanowires. It is also related to a prevailed zinc polarity, for which its uniformity is strongly improved in nanowires. The nucleation of basal-plane stacking faults of I1-type in nanowires is also revealed and related to an emission line at about 3.326 eV in cathodoluminescence spectra, further exhibiting fairly low phonon coupling. Interestingly, the transition is additionally associated with a significant improvement of the piezoelectric amplitude, as determined by piezoresponse force microscopy measurements. The Zn-polar domains exhibit a larger piezoelectric amplitude than the O-polar domains, showing the importance of controlling the polarity in these deposits as a prerequisite to enhance the performances of piezoelectric devices. The present findings demonstrate the high potential in using the PLI-MOCVD system to form ZnO with different morphologies and polarity uniformity on silicon. They further reveal unambiguously the superiority of nanowires over thin films for piezoelectric devices.

11.
Micromachines (Basel) ; 10(4)2019 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-31013735

RESUMO

The impact of vertical electrical field on the electron related linear and 3rd order nonlinear optical properties are evaluated numerically for pyramidal GeSn quantum dots with different sizes. The electric field induced electron confining potential profile's modification is found to alter the transition energies and the transition dipole moment, particularly for larger dot sizes. These variations strongly influence the intersubband photoabsorption coefficients and changes in the refractive index with an increasing tendency of the 3rd order nonlinear component with increasing both quantum dot (QD) size and applied electric field. The results show that intersubband optical properties of GeSn quantum dots can be successively tuned by external polarization.

12.
Nanotechnology ; 30(34): 345601, 2019 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-31035270

RESUMO

ZnO nanowires are considered as attractive building blocks for piezoelectric devices, including nano-generators and stress/strain sensors. However, their integration requires the use of metallic seed layers, on top of which the formation mechanisms of ZnO nanowires by chemical bath deposition are still largely open. In order to tackle that issue, the nucleation and growth mechanisms of ZnO nanowires on top of Au seed layers with a thickness in the range of 5-100 nm are thoroughly investigated. We show that the ZnO nanowires present two different populations of nano-objects with a given morphology. The majority primary population is made of vertically aligned ZnO nanowires, which are heteroepitaxially formed on top of the Au (111) grains. The resulting epitaxial strain is found to be completely relieved at the Au/ZnO interface. In contrast, the minority secondary population is composed of ZnO nanowires with a significant mean tilt angle around 20° with respect to the normal to the substrate surface, which are presumably formed on the (211) facets of the Au (111) grains. The elongation of ZnO nanowires is further found to be limited by the surface reaction at the c-plane top facet in the investigated conditions. By implementing the selective area growth using electron beam lithography, the position of ZnO nanowires is controlled, but the two populations still co-exist in the ensemble. These findings provide an in-depth understanding of the formation mechanisms of ZnO nanowires on metallic seed layers, which should be taken into account for their more efficient integration into piezoelectric devices.

13.
Nanomaterials (Basel) ; 9(1)2019 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-30669458

RESUMO

Intersubband optical transitions, refractive index changes, and absorption coefficients are numerically driven for direct bandgap strained GeSn/Ge quantum dots. The linear, third-order nonlinear and total, absorption coefficients and refractive index changes are evaluated over useful dot sizes' range ensuring p-like Γ-electron energy state to be lower than s-like L-electron energy state. The results show strong dependence of the total absorption coefficient and refractive index changes on the quantum dot sizes. The third order nonlinear contribution is found to be sensitive to the incident light intensity affecting both total absorption coefficient and refractive index changes, especially for larger dot sizes.

14.
Nanoscale Res Lett ; 13(1): 172, 2018 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-29882031

RESUMO

Strain-engineered self-assembled GeSn/GeSiSn quantum dots in Ge matrix have been numerically investigated aiming to study their potentiality towards direct bandgap emission in the mid-IR range. The use of GeSiSn alloy as surrounding media for GeSn quantum dots (QD) allows adjusting the strain around the QD through the variation of Si and/or Sn composition. Accordingly, the lattice mismatch between the GeSn quantum dots and the GeSiSn surrounding layer has been tuned between - 2.3 and - 4.5% through the variation of the Sn barrier composition for different dome-shaped QD sizes. The obtained results show that the emission wavelength, fulfilling the specific QD directness criteria, can be successively tuned over a broad mid-IR range from 3 up to7 µm opening new perspectives for group IV laser sources fully integrated in Si photonic systems for sensing applications.

15.
Nano Lett ; 14(9): 5140-7, 2014 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-25118977

RESUMO

As MOSFETs are scaled down, power dissipation remains the most challenging bottleneck for nanoelectronic devices. To circumvent this challenge, alternative devices such as tunnel field effect transistors are potential candidates, where the carriers are injected by a much less energetically costly quantum band to band tunneling mechanism. In this context, axial nanowire heterointerfaces with well-controlled interfacial abruptness offer an ideal structure. We demonstrate here the effect of tuning the Ge concentration in a Si1-xGex part of the nanowire on the Si/Si1-xGex and Si1-xGex/Si interfacial abruptness in axial Si-Si1-xGex nanowire heterostructures grown by the Au-catalyzed vapor-liquid-solid method. The two heterointerfaces are always asymmetric irrespective of the Ge concentration or nanowire diameter. For a fixed diameter, the value of interface abruptness decreases with increasing the Ge content for the Si/Si1-xGex interface but shows no strong Ge dependence at the Si1-xGex/Si interface where it features a linear correlation with the nanowire diameter. To rationalize these findings, a kinetic model for the layer-by-layer growth of nanowire heterostructures from a ternary Au-Ge-Si alloy is established that predicts a discrepancy in Ge concentration in the layer and the catalyst droplet. The Ge concentration in each layer is predicted to be dependent on the composition of the preceding layer. The most abrupt heterointerface (∼5 nm) is achieved by growing Si1-xGex with x = 0.85 on Si in a 25 nm diameter nanowire.

16.
Nanoscale Res Lett ; 6(1): 187, 2011 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-21711709

RESUMO

The growth of semiconductor (SC) nanowires (NW) by CVD using Au-catalyzed VLS process has been widely studied over the past few years. Among others SC, it is possible to grow pure Si or SiGe NW thanks to these techniques. Nevertheless, Au could deteriorate the electric properties of SC and the use of other metal catalysts will be mandatory if NW are to be designed for innovating electronic. First, this article's focus will be on SiGe NW's growth using Au catalyst. The authors managed to grow SiGe NW between 350 and 400°C. Ge concentration (x) in Si1-xGex NW has been successfully varied by modifying the gas flow ratio: R = GeH4/(SiH4 + GeH4). Characterization (by Raman spectroscopy and XRD) revealed concentrations varying from 0.2 to 0.46 on NW grown at 375°C, with R varying from 0.05 to 0.15. Second, the results of Si NW growths by CVD using alternatives catalysts such as platinum-, palladium- and nickel-silicides are presented. This study, carried out on a LPCVD furnace, aimed at defining Si NW growth conditions when using such catalysts. Since the growth temperatures investigated are lower than the eutectic temperatures of these Si-metal alloys, VSS growth is expected and observed. Different temperatures and HCl flow rates have been tested with the aim of minimizing 2D growth which induces an important tapering of the NW. Finally, mechanical characterization of single NW has been carried out using an AFM method developed at the LTM. It consists in measuring the deflection of an AFM tip while performing approach-retract curves at various positions along the length of a cantilevered NW. This approach allows the measurement of as-grown single NW's Young modulus and spring constant, and alleviates uncertainties inherent in single point measurement.

17.
Nanotechnology ; 22(10): 105704, 2011 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-21289392

RESUMO

We present an improved atomic force microscopy (AFM) method to study the piezoelectric properties of nanostructures. An AFM tip is used to deform a free-standing piezoelectric nanowire. The deflection of the nanowire induces an electric potential via the piezoelectric effect, which is measured by the AFM coating tip. During the manipulation, the applied force, the forcing location and the nanowire's deflection are precisely known and under strict control. We show the measurements carried out on intrinsic GaN and n-doped GaN-AlN-GaN nanowires by using our method. The measured electric potential, as high as 200 mV for n-doped GaN-AlN-GaN nanowire and 150 mV for intrinsic GaN nanowire, have been obtained, these values are higher than theoretical calculations. Our investigation method is exceptionally useful to thoroughly examine and completely understand the piezoelectric phenomena of nanostructures. Our experimental observations intuitively reveal the great potential of piezoelectric nanostructures for converting mechanical energy into electricity. The piezoelectric properties of nanostructures, which are demonstrated in detail in this paper, represent a promising approach to fabricating cost-effective nano-generators and highly sensitive self-powered NEMS sensors.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...