Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Plant Sci ; 5: 102, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24688487

RESUMO

Endosperm transfer cells in maize have extensive cell wall ingrowths that play a key role in kernel development. Although the incorporation of lignin would support this process, its presence in these structures has not been reported in previous studies. We used potassium permanganate staining combined with transmission electron microscopy - energy dispersive X-ray spectrometry as well as acriflavine staining combined with confocal laser scanning microscopy to determine whether the most basal endosperm transfer cells (MBETCs) contain lignified cell walls, using starchy endosperm cells for comparison. We investigated the lignin content of ultrathin sections of MBETCs treated with hydrogen peroxide. The lignin content of transfer and starchy cell walls was also determined by the acetyl bromide method. Finally, the relationship between cell wall lignification and MBETC growth/flange ingrowth orientation was evaluated. MBETC walls and ingrowths contained lignin throughout the period of cell growth we monitored. The same was true of the starchy cells, but those underwent an even more extensive growth period than the transfer cells. Both the reticulate and flange ingrowths were also lignified early in development. The significance of the lignification of maize endosperm cell walls is discussed in terms of its impact on cell growth and flange ingrowth orientation.

2.
Protoplasma ; 250(2): 495-503, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22814725

RESUMO

Maize (Zea mays L.) endosperm transfer cells are essential for kernel growth and development so they have a significant impact on grain yield. Although structural and ultrastructural studies have been published, little is known about the development of these cells, and prior to this study, there was a general consensus that they contain only flange ingrowths. We characterized the development of maize endosperm transfer cells by bright field microscopy, transmission electron microscopy, and confocal laser scanning microscopy. The most basal endosperm transfer cells (MBETC) have flange and reticulate ingrowths, whereas inner transfer cells only have flange ingrowths. Reticulate and flange ingrowths are mostly formed in different locations of the MBETC as early as 5 days after pollination, and they are distinguishable from each other at all stages of development. Ingrowth structure and ultrastructure and cellulose microfibril compaction and orientation patterns are discussed during transfer cell development. This study provides important insights into how both types of ingrowths are formed in maize endosperm transfer cells.


Assuntos
Endosperma/citologia , Zea mays/citologia , Endosperma/ultraestrutura , Microscopia Eletrônica de Transmissão , Zea mays/ultraestrutura
3.
Biomaterials ; 28(25): 3644-55, 2007 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-17532040

RESUMO

There is a need for new therapeutic strategies to treat bone defects caused by trauma, disease or tissue loss. Injectable systems for cell transplantation have the advantage of allowing the use of minimally invasive surgical procedures, and thus for less discomfort to patients. In the present study, it is hypothesized that Arg-Gly-Asp (RGD)-coupled in a binary (low and high molecular weight) injectable alginate composition is able to influence bone cell differentiation in a three-dimensional (3D) structure. Viability, metabolic activity, cytoskeleton organization, ultrastructure and differentiation (alkaline phosphatase (ALP), von Kossa, alizarin red stainings and osteocalcin quantification) of immobilized cells were assessed. Cells within RGD-modified alginate microspheres were able to establish more interactions with the synthetic extracellular matrix as visualized by confocal laser scanning microscope and transmission electron microscopy imaging, and presented a much higher level of differentiation (more intense ALP and mineralization stainings and higher levels of osteocalcin secretion) when compared to cells immobilized within unmodified alginate microspheres. These findings demonstrate that peptides covalently coupled to alginate were efficient in influencing cell behavior within this 3D system, and may provide adequate preparation of osteoblasts for cell transplantation.


Assuntos
Alginatos/farmacologia , Diferenciação Celular/efeitos dos fármacos , Matriz Extracelular/química , Osteoblastos/efeitos dos fármacos , Células 3T3 , Alginatos/química , Fosfatase Alcalina/metabolismo , Animais , Adesão Celular/efeitos dos fármacos , Diferenciação Celular/fisiologia , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Citoesqueleto/metabolismo , Ácido Glucurônico/química , Ácido Glucurônico/farmacologia , Ácidos Hexurônicos/química , Ácidos Hexurônicos/farmacologia , Camundongos , Microscopia Confocal , Microscopia Eletrônica de Transmissão , Microesferas , Oligopeptídeos/química , Osteoblastos/citologia , Osteoblastos/ultraestrutura , Osteocalcina/metabolismo
4.
Funct Plant Biol ; 33(7): 639-651, 2006 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32689273

RESUMO

Plants contain multiple forms of catalase (CAT) and their specific functions remain uncertain. We cloned two potato cDNAs corresponding to CAT1 and CAT2 genes, analysed their phylogenetic relationship, and studied their expression and activity in different organs to gain clues to their functions. Phylogenetic trees and the alignment of CAT cDNA sequences provided evidence that CAT1 and CAT2 genes have high identity to catalases of other solanaceous species, but are not phylogenetically closely related to one another, which contradicts the phylogenetic closeness ascribed to these genes. Northern blot analyses revealed that expression of CAT genes is controlled by leaf developmental phase. CAT2 expression was higher in both very young and senescent leaves, whereas CAT1 mRNA accumulated mainly in mature leaf, where the lowest CAT2 expression occurred. CAT1 and CAT2 are also differentially expressed in root, sprout and petal. Expression and activity patterns are consistent with different physiological roles for CAT1 and CAT2 isoforms. CAT1 is considered to be associated with photorespiration whereas CAT2 would fulfill physiological roles unrelated to this process. CAT2 appears to be a multifunctional isoform, associated with glyoxysomal activity in leaf senescence, other processes in non-photosynthetic organs and defence, functions that in other solanaceous species are fulfilled by two different isoforms.

5.
J Exp Bot ; 56(412): 663-71, 2005 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-15642719

RESUMO

Potato (Solanum tuberosum L. cv. Desiree) glutamine synthetase (GS) (EC 6.3.1.2) gene expression and polypeptide accumulation patterns were analysed in several organs and at several developmental stages. Three GS genes have been identified, one gene encoding plastidic GS (GS2) and two encoding cytosolic GS (GS1) that are differentially expressed in the plant at cellular and organ levels. Specific developmental regulation of different GS genes was also observed. Potato GS seems to be regulated essentially at transcription and/or RNA stability levels. GS2 polypeptides and mRNAs were detected in leaves and their content decreased as leaves senesced. A similar pattern of expression was observed for the GS1 gene Stgs1a. GS1 transcripts and polypeptides were present in all organs analysed and are the only GS detected in non-photosynthetic tissues and in the later leaf senescing stages. The increase in GS1 during leaf senescence mainly reflected polypeptide and transcript accumulation of the GS1-encoding gene Stgs1b. In situ hybridization results point to a cell-specific expression of GS1 genes within the vascular bundles, Stgs1b being expressed in the xylem and phloem parenchyma cells, and Stgs1a being expressed only in the phloem companion cells. This pattern of spatial distribution and differential developmental regulation of different GS1 genes differs from what has been previously described for genes of other Solanaceae with a high degree of similarity with the ones described here and suggests that distinct GS1 isozymes have specific and possibly distinct roles within the same organ. These new findings highlight the physiological importance of different GS1 isoenzymes in plant nitrogen metabolism.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Regulação da Expressão Gênica de Plantas/fisiologia , Glutamato-Amônia Ligase/metabolismo , Nitrogênio/metabolismo , Solanum tuberosum/enzimologia , Regulação Enzimológica da Expressão Gênica/fisiologia , Glutamato-Amônia Ligase/fisiologia , Folhas de Planta/enzimologia , Raízes de Plantas/enzimologia , Caules de Planta/enzimologia , Tubérculos/enzimologia , RNA Mensageiro , RNA de Plantas , Solanum tuberosum/crescimento & desenvolvimento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...