Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Drug Deliv Transl Res ; 14(4): 858-894, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37882983

RESUMO

The biological and biomechanical functions of cartilage, bone and osteochondral tissue are naturally orchestrated by a complex crosstalk between zonally dependent cells and extracellular matrix components. In fact, this crosstalk involves biomechanical signals and the release of biochemical cues that direct cell fate and regulate tissue morphogenesis and remodelling in vivo. Three-dimensional bioprinting introduced a paradigm shift in tissue engineering and regenerative medicine, since it allows to mimic native tissue anisotropy introducing compositional and architectural gradients. Moreover, the growing synergy between bioprinting and drug delivery may enable to replicate cell/extracellular matrix reciprocity and dynamics by the careful control of the spatial and temporal patterning of bioactive cues. Although significant advances have been made in this direction, unmet challenges and open research questions persist. These include, among others, the optimization of scaffold zonality and architectural features; the preservation of the bioactivity of loaded active molecules, as well as their spatio-temporal release; the in vitro scaffold maturation prior to implantation; the pros and cons of each animal model and the graft-defect mismatch; and the in vivo non-invasive monitoring of new tissue formation. This work critically reviews these aspects and reveals the state of the art of using three-dimensional bioprinting, and its synergy with drug delivery technologies, to pattern the distribution of cells and/or active molecules in cartilage, bone and osteochondral engineered tissues. Most notably, this work focuses on approaches, technologies and biomaterials that are currently under in vivo investigations, as these give important insights on scaffold performance at the implantation site and its interaction/integration with surrounding tissues.


Assuntos
Bioimpressão , Animais , Bioimpressão/métodos , Alicerces Teciduais/química , Cartilagem , Engenharia Tecidual/métodos , Osso e Ossos
2.
J Funct Biomater ; 14(9)2023 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-37754894

RESUMO

Biocompatible and biodegradable foams prepared using the high-pressure foaming technique have been widely investigated in recent decades as porous scaffolds for in vitro and in vivo tissue growth. In fact, the foaming process can operate at low temperatures to load bioactive molecules and cells within the pores of the scaffold, while the density and pore architecture, and, hence, properties of the scaffold, can be finely modulated by the proper selection of materials and processing conditions. Most importantly, the high-pressure foaming of polymers is an ideal choice to limit and/or avoid the use of cytotoxic and tissue-toxic compounds during scaffold preparation. The aim of this review is to provide the reader with the state of the art and current trend in the high-pressure foaming of biomedical polymers and composites towards the design and fabrication of multifunctional scaffolds for tissue engineering. This manuscript describes the application of the gas foaming process for bio-scaffold design and fabrication and highlights some of the most interesting results on: (1) the engineering of porous scaffolds featuring biomimetic porosity to guide cell behavior and to mimic the hierarchical architecture of complex tissues, such as bone; (2) the bioactivation of the scaffolds through the incorporation of inorganic fillers and drugs.

3.
J Funct Biomater ; 14(2)2023 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-36826900

RESUMO

Tissue engineering needs bioactive drug delivery scaffolds capable of guiding cell biosynthesis and tissue morphogenesis in three dimensions. Several strategies have been developed to design and fabricate ECM-mimicking scaffolds suitable for directing in vitro cell/scaffold interaction, and controlling tissue morphogenesis in vivo. Among these strategies, emerging computer aided design and manufacturing processes, such as modular tissue unit patterning, promise to provide unprecedented control over the generation of biologically and biomechanically competent tissue analogues. This review discusses recent studies and highlights the role of scaffold microstructural properties and their drug release capability in cell fate control and tissue morphogenesis. Furthermore, the work highlights recent advances in the bottom-up fabrication of porous scaffolds and hybrid constructs through the computer-aided assembly of cell-free and/or cell-laden micro-modules. The advantages, current limitations, and future challenges of these strategies are described and discussed.

4.
Ann Anat ; 245: 152019, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36377095

RESUMO

The demand for artificial or bioartificial engineered tissues is increasing today in regenerative medicine techniques to replace and restore the physiological function of damaged tissues. Such engineered constructs hold different properties depending on the tissue to be replicated. As for vascularized tissues, complex biocompatible structures, namely scaffolds, play a key role in supporting oxygen and nutrient supply, thus sustaining tissue neoformation and integration with the host. Scaffold architecture significantly impacts its regenerative potential, while preclinical trials are essential to define scaffold-host interactions. In compliance with the 3 R principle, there is a clear need to optimize both the procedures to evaluate scaffold performance and the analysis methodology decreasing the number of animals required to gain consistent data. In parallel, current technologies used in preclinical research generate huge amounts of data that need to be elaborated and interpreted correctly. Therefore, we designed this study to evaluate the results of scaffold integration with the host tissue after implantation in a mouse subcutaneous pocket model. We evaluated the angiogenic response developed by the host and the degree of scaffold integration by using a combined morphometric approach based on both histological and micro-CT analyses. Six-layer scaffolds, made of polycaprolactone (PCL) microspheres, with an ordered structure were produced by thermal sintering. Scaffolds were then implanted in BALB/c mice and retrieved 21 days post-implantation when the animals were deeply anesthetized and perfused with Microfil, a contrast agent for micro-CT. Here, we describe a method to extract quantitative data from micro-CT reconstructions such as (i) total vessel volume; (ii)% of vessel penetration; (iii) distribution of vessel diameters. The general principle of this approach is the refinement of the region of interest (ROI), thus producing a volume of interest (VOI) that matches scaffold volume. This VOI serves as a dataset from which to extract volumetric information. Then VOIs are divided into three identical parts, proximal, median, and distal, to follow the vessel progression into the scaffold, thus obtaining their depth of penetration (DoP). By this methodology, we observed in mean, among the analyzed samples, a vessel invasion for 1,38 mm3 corresponding to the 1,53% of the scaffold volume. We then looked at the diameter distribution being this value a key indicator of vessel maturity, highlighting that 55% of vessels fall into the range from 5,99-53.99 µm while the remaining 45% are distributed into intervals from 54 to 136 µm. In parallel, to evaluate tissue integration in detail, histological and immunofluorescent analyses were performed to look at vessel distribution and collagen synthesis. Histological results strongly correlate with the micro-CT data providing, however, an overview of the ingrowth tissues. In addition, by immunofluorescent analysis we demonstrate that newly formed vessels are mature at the considered time point and tissue collagen deposition is widespread within the scaffolds. Collectively, we propose a new method to track vessel formation by using a multi-modal approach posing the basis for: i) the fabrication of novel scaffolds for Tissue Engineering; ii) the integration of detailed information for a wide range of morphological and functional analyses.


Assuntos
Engenharia Tecidual , Cicatrização , Camundongos , Animais , Microtomografia por Raio-X , Engenharia Tecidual/métodos , Colágeno , Alicerces Teciduais/química
5.
Biofabrication ; 14(4)2022 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-35917812

RESUMO

Modular tissue engineering (mTE) strategies aim to build three-dimensional tissue analoguesin vitroby the sapient combination of cells, micro-scaffolds (µ-scaffs) and bioreactors. The translation of these newly engineered tissues into current clinical approaches is, among other things, dependent on implant-to-host microvasculature integration, a critical issue for cells and tissue survivalin vivo. In this work we reported, for the first time, a computer-aided modular approach suitable to build fully vascularized hybrid (biological/synthetic) constructs (bio-constructs) with micro-metric size scale control of blood vessels growth and orientation. The approach consists of four main steps, starting with the fabrication of polycaprolactoneµ-scaffs by fluidic emulsion technique, which exhibit biomimetic porosity features. In the second step, layers ofµ-scaffs following two different patterns, namely ordered and disordered, were obtained by a soft lithography-based process. Then, the as obtainedµ-scaff patterns were used as template for human dermal fibroblasts and human umbilical vein endothelial cells co-culture, aiming to promote and guide the biosynthesis of collagenous extracellular matrix and the growth of new blood vessels within the mono-layered bio-constructs. Finally, bi-layered bio-constructs were built by the alignment, stacking and fusion of two vascularized mono-layered samples featuring ordered patterns. Our results demonstrated that, if compared to the disordered pattern, the ordered one provided better control over bio-constructs shape and vasculature architecture, while minor effect was observed with respect to cell colonization and new tissue growth. Furthermore, by assembling two mono-layered bio-constructs it was possible to build 1 mm thick fully vascularized viable bio-constructs and to study tissue morphogenesis during 1 week ofin vitroculture. In conclusion, our results highlighted the synergic role ofµ-scaff architectural features and spatial patterning on cells colonization and biosynthesis, and pave the way for the possibility to create in silico designed vasculatures within modularly engineered bio-constructs.


Assuntos
Células Endoteliais , Alicerces Teciduais , Técnicas de Cocultura , Matriz Extracelular , Humanos , Engenharia Tecidual/métodos
6.
Biofabrication ; 14(4)2022 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-35728565

RESUMO

In the past decade, modular scaffolds prepared by assembling biocompatible and biodegradable building blocks (e.g. microspheres) have found promising applications in tissue engineering (TE) towards the repair/regeneration of damaged and impaired tissues. Nevertheless, to date this approach has failed to be transferred to the clinic due to technological limitations regarding microspheres patterning, a crucial issue for the control of scaffold strength, vascularization and integrationin vivo. In this work, we propose a robust and reliable approach to address this issue through the fabrication of polycaprolactone (PCL) microsphere-based scaffolds with in-silico designed microarchitectures and high compression moduli. The scaffold fabrication technique consists of four main steps, starting with the manufacture of uniform PCL microspheres by fluidic emulsion technique. In the second step, patterned polydimethylsiloxane (PDMS) moulds were prepared by soft lithography. Then, layers of 500µm PCL microspheres with geometrically inspired patterns were obtained by casting the microspheres onto PDMS moulds followed by their thermal sintering. Finally, three-dimensional porous scaffolds were built by the alignment, stacking and sintering of multiple (up to six) layers. The so prepared scaffolds showed excellent morphological and microstructural fidelity with respect to the in-silico models, and mechanical compression properties suitable for load bearing TE applications. Designed porosity and pore size features enabledin vitrohuman endothelial cells adhesion and growth as well as tissue integration and blood vessels invasionin vivo. Our results highlighted the strong impact of spatial patterning of microspheres on modular scaffolds response, and pay the way about the possibility to fabricate in silico-designed structures featuring biomimetic composition and architectures for specific TE purposes.


Assuntos
Células Endoteliais , Alicerces Teciduais , Computadores , Microesferas , Poliésteres/química , Porosidade , Engenharia Tecidual/métodos , Alicerces Teciduais/química
8.
Front Bioeng Biotechnol ; 9: 682133, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34249885

RESUMO

In the last decade, additive manufacturing (AM) processes have updated the fields of biomaterials science and drug delivery as they promise to realize bioengineered multifunctional devices and implantable tissue engineering (TE) scaffolds virtually designed by using computer-aided design (CAD) models. However, the current technological gap between virtual scaffold design and practical AM processes makes it still challenging to realize scaffolds capable of encoding all structural and cell regulatory functions of the native extracellular matrix (ECM) of health and diseased tissues. Indeed, engineering porous scaffolds capable of sequestering and presenting even a complex array of biochemical and biophysical signals in a time- and space-regulated manner, require advanced automated platforms suitable of processing simultaneously biomaterials, cells, and biomolecules at nanometric-size scale. The aim of this work was to review the recent scientific literature about AM fabrication of drug delivery scaffolds for TE. This review focused on bioactive molecule loading into three-dimensional (3D) porous scaffolds, and their release effects on cell fate and tissue growth. We reviewed CAD-based strategies, such as bioprinting, to achieve passive and stimuli-responsive drug delivery scaffolds for TE and cancer precision medicine. Finally, we describe the authors' perspective regarding the next generation of CAD techniques and the advantages of AM, microfluidic, and soft lithography integration for enhancing 3D porous scaffold bioactivation toward functional bioengineered tissues and organs.

9.
ACS Appl Mater Interfaces ; 13(8): 9589-9603, 2021 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-33595284

RESUMO

Porous microscaffolds (µ-scaffs) play a crucial role in modular tissue engineering as they control cell functions and guide hierarchical tissue formation toward building new functional tissue analogues. In the present study, we developed a new route to prepare porous polycaprolactone (PCL) µ-scaffs with a bioinspired trabecular structure that supported in vitro adhesion, growth, and biosynthesis of human dermal fibroblasts (HDFs). The method involved the use of poly(ethylene oxide) (PEO) as a biocompatible porogen and a fluidic emulsion/porogen leaching/particle coagulation process to obtain spherical µ-scaffs with controllable diameter and full pore interconnectivity. To achieve this objective, we investigated the effect of PEO concentration and the temperature of the coagulation bath on the µ-scaff architecture, while we modulated the µ-scaff diameter distribution by varying the PCL-PEO amount in the starting solution and changing the flow rate of the continuous phase (QCP). µ-Scaff morphology, pore architecture, and diameter distribution were assessed using scanning electron microscopy (SEM) analysis, microcomputed tomography (microCT), and Image analysis. We reported that the selection of 60 wt % PEO concentration, together with a 4 °C coagulation bath temperature and ultrasound postprocessing, allowed for the design and fabrication of µ-scaff with porosity up to 80% and fully interconnected pores on both the µ-scaff surface and the core. Furthermore, µ-scaff diameter distributions were finely tuned in the 100-600 µm range with the coefficient of variation lower than 5% by selecting the PCL-PEO concentration in the 1-10% w/v range and QCP of either 8 or 18 mL/min. Finally, we investigated the capability of the HDF-seeded PCL µ-scaff to form hybrid (biological/synthetic) tissue in vitro. Cell culture tests demonstrated that PCL µ-scaff enabled HDF adhesion, proliferation, colonization, and collagen biosynthesis within inter- and intraparticle spaces and guided the formation of a large (centimeter-sized) viable tissue construct.


Assuntos
Materiais Biocompatíveis/química , Fibroblastos/metabolismo , Poliésteres/química , Engenharia Tecidual/instrumentação , Alicerces Teciduais/química , Materiais Biomiméticos/química , Proliferação de Células/fisiologia , Sobrevivência Celular/fisiologia , Colágeno/metabolismo , Humanos , Polietilenoglicóis/química , Porosidade , Pele/citologia , Engenharia Tecidual/métodos
10.
Mater Sci Eng C Mater Biol Appl ; 109: 110518, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32228998

RESUMO

In tissue engineering, the use of supercritical CO2 foaming is a valuable and widespread choice to design and fabricate porous bioactive scaffolds for cells culture and new tissue formation in three dimensions. Nevertheless, the control of scaffold pores size, shape and spatial distribution with foaming technique remains, to date, a critical limiting step. To mimic the biomimetic structure of tissues like bone, blood vessels and nerve tissues, we developed a novel supercritical CO2-foaming approach for the preparation of dual-scale, dual-shape porous polymeric scaffolds with pre-defined arrays of micro-channels within a foamed porosity. The scaffolds were prepared by foaming the polymer inside polytetrafluoroethylene moulds having precisely designed arrays of pillars and obtained by computer-aided micromachining technique. Polycaprolactone was chosen as model polymer for scaffolds fabrication and the effect of mould patterning and scCO2 foaming conditions on scaffolds morphology, structural properties and biocompatibility was addressed and discussed. The results reported in this study demonstrated that the proposed approach enabled the preparation of polycaprolactone scaffolds with dual-scale, dual-shape porosity. In particular, by saturating the polymer with CO2 at 38 °C, 10 MPa and 1 h and by selecting 2 s as the venting time, scaffolds with ordered arrays of aligned channels, diameters ranging from 500 to 1000 µm, were obtained. Furthermore, the channels spatial distribution was controlled by defining mould patterning while the size of foamed pores was modulated by saturation and foaming temperatures and venting time control. The prepared scaffolds evidenced overall porosity up to 95%, with 100% interconnectivity and compression moduli in the 4 to 5 MPa range. Finally, preliminary in vitro cell culture tests evidenced that the scaffolds were biocompatible and that the micro-channels promoted and guided cells adhesion and colonization into the scaffolds core.


Assuntos
Dióxido de Carbono/química , Fibroblastos/metabolismo , Poliésteres/química , Engenharia Tecidual , Alicerces Teciduais/química , Feminino , Fibroblastos/citologia , Humanos
11.
J Clin Med ; 8(11)2019 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-31683796

RESUMO

Engineering three-dimensional (3D) scaffolds for functional tissue and organ regeneration is a major challenge of the tissue engineering (TE) community. Great progress has been made in developing scaffolds to support cells in 3D, and to date, several implantable scaffolds are available for treating damaged and dysfunctional tissues, such as bone, osteochondral, cardiac and nerve. However, recapitulating the complex extracellular matrix (ECM) functions of native tissues is far from being achieved in synthetic scaffolds. Modular TE is an intriguing approach that aims to design and fabricate ECM-mimicking scaffolds by the bottom-up assembly of building blocks with specific composition, morphology and structural properties. This review provides an overview of the main strategies to build synthetic TE scaffolds through bioactive modules assembly and classifies them into two distinct schemes based on microparticles (µPs) or patterned layers. The µPs-based processes section starts describing novel techniques for creating polymeric µPs with desired composition, morphology, size and shape. Later, the discussion focuses on µPs-based scaffolds design principles and processes. In particular, starting from random µPs assembly, we will move to advanced µPs structuring processes, focusing our attention on technological and engineering aspects related to cell-free and cell-laden strategies. The second part of this review article illustrates layer-by-layer modular scaffolds fabrication based on discontinuous, where layers' fabrication and assembly are split, and continuous processes.

12.
Biofabrication ; 9(3): 035002, 2017 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-28604361

RESUMO

Supercritical foaming allows for the solvent-free processing of synthetic scaffolds for bone regeneration. However, the control on the pore interconnectivity and throat pore size with this technique still needs to be improved. The use of plasticizers may help overcome these limitations. Eugenol, a GRAS natural compound extracted from plants, is proposed in this work as an advanced plasticizer with bioactive properties. Eugenol-containing poly(ε-caprolactone) (PCL) scaffolds were obtained by supercritical foaming (20.0 MPa, 45 °C, 17 h) followed by a one or a two-step depressurization profile. The effects of the eugenol content and the depressurization profile on the porous structure of the material and the physicochemical properties of the scaffold were evaluated. The combination of both processing parameters was successful to simultaneously tune the pore interconnectivity and throat sizes to allow mesenchymal stem cells infiltration. Scaffolds with eugenol were cytocompatible, presented antimicrobial activity preventing the attachment of Gram positive (S. aureus, S. epidermidis) bacteria and showed good tissue integration.


Assuntos
Materiais Biocompatíveis/farmacologia , Regeneração Óssea/fisiologia , Plastificantes/farmacologia , Engenharia Tecidual/métodos , Alicerces Teciduais/química , Células 3T3 , Animais , Anti-Infecciosos/farmacologia , Regeneração Óssea/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Galinhas , Membrana Corioalantoide/efeitos dos fármacos , Membrana Corioalantoide/metabolismo , Eugenol/farmacologia , Humanos , Cinética , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/efeitos dos fármacos , Camundongos , Testes de Sensibilidade Microbiana , Permeabilidade , Poliésteres/química , Porosidade , Pressão , Temperatura , Água
13.
J Tissue Eng Regen Med ; 11(6): 1865-1875, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28586547

RESUMO

The evolution of microscaffolds and bone-bioactive surfaces is a pivotal point in modular bone tissue engineering. In this study, the design and fabrication of porous polycaprolactone (PCL) microscaffolds functionalized with hydroxyapatite (HA) nanoparticles by means of a bio-safe and versatile thermally-induced phase separation process is reported. The ability of the as-prepared nanocomposite microscaffolds to support the adhesion, growth and osteogenic differentiation of human mesenchymal stem cells (hMSCs) in standard and osteogenic media and using dynamic seeding/culture conditions was investigated. The obtained results demonstrated that the PCL-HA nanocomposite microparticles had an enhanced interaction with hMSCs and induced their osteogenic differentiation, even without the exogenous addition of osteogenic factors. In particular, calcium deposition, alizarin red assay, histological analysis, osteogenic gene expression and collagen I secretion were assessed. The results of these tests demonstrated the formation of bone microtissue precursors after 28 days of dynamic culture. These findings suggest that PCL-HA nanocomposite microparticles represent an excellent platform for in vitro modular bone tissue engineering. Copyright © 2015 John Wiley & Sons, Ltd.


Assuntos
Células da Medula Óssea/metabolismo , Osso e Ossos/metabolismo , Diferenciação Celular , Durapatita/química , Células-Tronco Mesenquimais/metabolismo , Osteogênese , Poliésteres/química , Alicerces Teciduais/química , Células da Medula Óssea/citologia , Osso e Ossos/citologia , Humanos , Células-Tronco Mesenquimais/citologia
14.
Mater Sci Eng C Mater Biol Appl ; 75: 1191-1197, 2017 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-28415406

RESUMO

This study describes a new preparation method, which combines freeze drying and supercritical CO2 foaming approaches, for the preparation of drug delivery scaffolds of polycaprolactone loaded with 5-fluorouracil, an anti-cancer drug, with low solubility in scCO2. It is a principal objective of this work to design a scCO2 strategy to reduce 5-Fu solubility limitations in its homogeneous distribution into a PCL scaffold through the design of an innovative processing method. The design of this process is considered valuable for the development of clean technology in pharmacy and medicine, since most of the active agents have a null solubility in scCO2·Supercritical CO2 is used as a blowing agent to induce polymer foaming by means of the low temperature pressure quench process. The resulting samples have been prepared under different operational conditions focused on enhancing the performance of the release process. In this case, design of experiments (DOE) was considered for a more comprehensive and systematic optimization of the product. In particular, drug amount, equals to 4.8 or 9.1wt%, process temperature, of 45 or 50°C and depressurization rate, equals to 0.1MPas-1 or 2MPas-1 were selected as the factors to be investigated by a three-factor at two-level full factorial design. Samples were characterized to establish porosity data, drug loading percentage and, especially, release profile chromatographically monitored. Results from DOE have concluded which are the best samples providing a sustained drug release for several days, which may be of great interest to develop materials for tissue engineering and sustained release applications.


Assuntos
Antineoplásicos , Portadores de Fármacos , Fluoruracila , Poliésteres , Antineoplásicos/química , Antineoplásicos/farmacocinética , Antineoplásicos/farmacologia , Portadores de Fármacos/síntese química , Portadores de Fármacos/química , Portadores de Fármacos/farmacocinética , Portadores de Fármacos/farmacologia , Fluoruracila/química , Fluoruracila/farmacocinética , Fluoruracila/farmacologia , Poliésteres/química , Poliésteres/farmacocinética , Poliésteres/farmacologia
15.
Mater Sci Eng C Mater Biol Appl ; 63: 512-21, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-27040246

RESUMO

In this study, the design and fabrication of porous scaffolds, made of blends of polylactic-co-caprolactone (PLC) and polylactic acid (PLA) polymers, for tissue engineering applications is reported. The scaffolds are prepared by means of a bio-safe thermally induced phase separation (TIPS) approach with or without the addition of NaCl particles used as particulate porogen. The scaffolds are characterized to assess their crystalline structure, morphology and mechanical properties, and the texture of the pores and the pore size distribution. Moreover, in vitro human mesenchymal stem cells (hMSCs) culture tests have been carried out to demonstrate the biocompatibility of the scaffolds. The results of this study demonstrate that all of the scaffold materials processed by means of TIPS process are semi-crystalline. Furthermore, the blend composition affected polymer crystallization and, in turn, the nano and macro-structural properties of the scaffolds. Indeed, neat PLC and neat PLA crystallize into globular and randomly arranged sub micro-size scale fibrous conformations, respectively. Concomitantly, the addition of NaCl particles during the fabrication route allows for the creation of an interconnected network of large pores inside the primary structure while resulted in a significant decrease of scaffolds mechanical response. Finally, the results of cell culture tests demonstrate that both the micro and macro-structure of the scaffold affect the in vitro hMSCs adhesion and proliferation.


Assuntos
Materiais Biocompatíveis/química , Poliésteres/química , Materiais Biocompatíveis/farmacologia , Células da Medula Óssea/citologia , Varredura Diferencial de Calorimetria , Adesão Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Força Compressiva , Humanos , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/efeitos dos fármacos , Células-Tronco Mesenquimais/metabolismo , Microscopia Eletrônica de Varredura , Porosidade , Difração de Raios X
16.
Int J Clin Exp Med ; 8(8): 13154-62, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26550238

RESUMO

Tissue engineering is one of the major challenges of orthopedics and trauma surgery for bone regeneration. Biomaterials filled with mesenchymal stem cells (MSCs) are considered the most promising approach in bone tissue engineering. Furthermore, our previous study showed that the multi-phase poly [ε-caprolactone]/thermoplastic zein-hydroxyapatite (PCL/TZ-HA) biomaterials improved rabbit (r) MSCs adhesion and osteoblast differentiation, thus demonstrating high potential of this bioengineered scaffold for bone regeneration. In the recent past, CD271 has been applied as a specific selective marker for the enrichment of MSCs from bone marrow (BM-MSCs). In the present study, we aimed at establishing whether CD271-based enrichment could be an efficient method for the selection of rBM-MSCs, displaying higher ability in osteogenic differentiation than non-selected rBM-MSCs in an in vitro system. CD271(+) cells were isolated from rabbit bone marrow and were compared with rMSCs in their proliferation rate and osteogenic differentiation capability. Furthermore, rCD271(+) cells were tested in their ability to adhere, proliferate and differentiate into osteogenic lineage, while growing on PCL/TZ-HA scaffolds, in comparison to rMSCs. Our result demonstrate that rCD271(+) cells were able to adhere, proliferate and differentiate into osteoblasts when cultured on PCL/TZ-HA scaffolds in significantly higher levels as compared to rMSCs. Based on these findings, CD271 marker might serve as an optimal alternative MSCs selection method for the potential preclinical and clinical application of these cells in bone tissue regeneration.

17.
Int J Pharm ; 496(2): 654-63, 2015 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-26570986

RESUMO

The manufacture of porous polycaprolactone (PCL) scaffolds containing three different drugs, namely 5-fluorouracil, nicotinamide and triflusal, was investigated in this work with the aim of obtaining bioactive systems with controlled drug delivery capabilities. The scaffolds were prepared by means of a supercritical CO2 (scCO2) foaming technique by optimizing the drug loading process. This was achieved by dissolving the drugs in organic solvents miscible with scCO2 and by mixing these drug/solvent solutions with PCL powder. The as prepared mixtures were further compressed to eliminate air bubbles and finally processed by the scCO2 foaming technique. ScCO2 saturation and foaming conditions were optimized to create the porosity within the samples and to allow for the concomitant removal of the organic solvents. Physical and chemical properties of porous scaffolds, as well as drug content and delivery profiles, were studied by HPLC. The results of this study demonstrated that the composition of the starting PCL/drug/solvent mixtures affected polymer crystallization, scaffold morphology and pore structure features. Furthermore, it was found that drug loading efficiency depended on both initial solution composition and drug solubility in scCO2. Nevertheless, in the case of highly scCO2-soluble drugs, such as triflusal, loading efficiency was improved by adding a proper amount of free drug inside of the pressure vessel. The drug delivery study indicated that release profiles depended mainly upon scaffolds composition and pore structure features.


Assuntos
Dióxido de Carbono/química , Sistemas de Liberação de Medicamentos/métodos , Fluoruracila/administração & dosagem , Niacinamida/administração & dosagem , Poliésteres/administração & dosagem , Salicilatos/administração & dosagem , Sistemas de Liberação de Medicamentos/instrumentação , Fluoruracila/farmacocinética , Células HeLa , Humanos , Niacinamida/farmacocinética , Poliésteres/farmacocinética , Salicilatos/farmacocinética , Alicerces Teciduais/química
18.
Mater Sci Eng C Mater Biol Appl ; 42: 102-10, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25063098

RESUMO

Open-pore biodegradable microparticles are object of considerable interest for biomedical applications, particularly as cell and drug delivery carriers in tissue engineering and health care treatments. Furthermore, the engineering of microparticles with well definite size distribution and pore architecture by bio-safe fabrication routes is crucial to avoid the use of toxic compounds potentially harmful to cells and biological tissues. To achieve this important issue, in the present study a straightforward and bio-safe approach for fabricating porous biodegradable microparticles with controlled morphological and structural features down to the nanometer scale is developed. In particular, ethyl lactate is used as a non-toxic solvent for polycaprolactone particles fabrication via a thermal induced phase separation technique. The used approach allows achieving open-pore particles with mean particle size in the 150-250 µm range and a 3.5-7.9 m(2)/g specific surface area. Finally, the combination of thermal induced phase separation and porogen leaching techniques is employed for the first time to obtain multi-scaled porous microparticles with large external and internal pore sizes and potential improved characteristics for cell culture and tissue engineering. Samples were characterized to assess their thermal properties, morphology and crystalline structure features and textural properties.


Assuntos
Materiais Biocompatíveis/química , Poliésteres/química , Materiais Biocompatíveis/síntese química , Lactatos/química , Tamanho da Partícula , Porosidade , Temperatura
19.
Macromol Rapid Commun ; 32(15): 1150-6, 2011 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-21648005

RESUMO

This communication reports the design and fabrication of porous scaffolds of poly(ε-caprolactone) (PCL) and PCL loaded with hydroxyapatite (HA) nanoparticles with bimodal pore size distributions by a two step depressurization solid-state supercritical CO(2) (scCO(2) ) foaming process. Results show that the pore structure features of the scaffolds are strongly affected by the thermal history of the starting polymeric materials and by the depressurization profile. In particular, PCL and PCL-HA nanocomposite scaffolds with bimodal and uniform pore size distributions are fabricated by quenching molten samples in liquid N(2) , solubilizing the scCO(2) at 37 °C and 20 MPa, and further releasing the blowing agent in two steps: (1) from 20 to 10 MPa at a slow depressurization rate, and (2) from 10 MPa to the ambient pressure at a fast depressurization rate. The biocompatibility of the bimodal scaffolds is finally evaluated by the in vitro culture of human mesenchymal stem cells (MSCs), in order to assess their potential for tissue engineering applications.


Assuntos
Materiais Biocompatíveis/síntese química , Química Orgânica/métodos , Durapatita/química , Nanocompostos/química , Poliésteres/química , Engenharia Tecidual/instrumentação , Materiais Biocompatíveis/química , Células da Medula Óssea/citologia , Dióxido de Carbono , Proliferação de Células , Humanos , Porosidade , Alicerces Teciduais/química
20.
Tissue Eng Part A ; 16(8): 2661-73, 2010 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-20687813

RESUMO

The design of porous scaffolds able to promote and guide cell proliferation, colonization, and biosynthesis in three dimensions is key determinant in bone tissue engineering (bTE). The aim of this study was to assess the role of the micro-architecture of poly(epsilon-caprolactone) scaffolds in affecting human mesenchymal stem cells' (hMSCs) spatial organization, proliferation, and osteogenic differentiation in vitro. Poly(epsilon-caprolactone) scaffolds for bTE and characterized by mono-modal and bi-modal pore size distributions were prepared by the combination of gas foaming and selective polymer extraction from co-continuous blends. The topological properties of the pore structure of the scaffolds were analyzed and the results correlated with the ability of hMSCs to proliferate, infiltrate, and differentiate in vitro in three dimensions. Results showed that the micro-architecture of the pore structure of the scaffolds plays a crucial role in defining cell seeding efficiency as well as hMSCs' three-dimensional colonization, proliferation, and osteogenic differentiation. Taken all together, our results indicated that process technologies able to allow a fine-tune of the topological properties of biodegradable porous scaffolds are essential for bTE strategies.


Assuntos
Desenvolvimento Ósseo/fisiologia , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/fisiologia , Osteoblastos/citologia , Osteoblastos/fisiologia , Poliésteres/síntese química , Engenharia Tecidual/instrumentação , Alicerces Teciduais , Diferenciação Celular , Proliferação de Células , Desenho de Equipamento , Análise de Falha de Equipamento , Humanos , Teste de Materiais , Osteogênese , Porosidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...