Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Sci Pollut Res Int ; 29(52): 79343-79356, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35710963

RESUMO

In this work, antibiotic pyrazinamide (PZA) photodegradation on palygorskite (Pal), NiWO4 crystals, and NiWO4-Pal (2, 6, and 10%) nanocomposites was evaluated under polychromatic irradiation. In the characterization of the samples, XRD patterns displayed good crystallinity for NiWO4 crystals and nanocomposites. In addition, the diffractograms were used in the Rietveld refinement for phase indexing, revealing a wolframite-type monoclinic structure with the space group P2/c. The active vibrational modes related to the characteristic groups of the samples were identified using Raman and FTIR spectroscopy. Photoluminescence (PL) spectra revealed that NiWO4 and NiWO4-Pal (2%) nanocomposite have the highest electron-hole pair recombination rate, and the contribution of the green component in the NiWO4-Pal (2%) nanocomposite indicates a greater contribution of deep energy levels to the PL profile. DRS in the UV-visible region indicated that NiWO4 crystals have indirect band-gap energy (Egap) 2.64 eV; NiWO4-Pal (2, 6, and 10%) nanocomposites have 2.62, 2.58, and 2.59 eV, respectively; and Pal has 2.83 eV. The catalytic tests showed that the NiWO4-Pal (2%) nanocomposite samples, under polychromatic radiation, exhibit greater efficiency in photodegradation at 110 min, with yield of 98.5%. The ROS tests indicated that the studied reactive species play a similar role in PZA photodegradation.


Assuntos
Nanocompostos , Pirazinamida , Fotólise , Espécies Reativas de Oxigênio , Nanocompostos/química , Antibacterianos/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...