Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Joule ; 5(11): 3057-3067, 2021 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-34841198

RESUMO

Thermoelectric modules are a promising approach to energy harvesting and efficient cooling. In addition to the longitudinal Seebeck effect, transverse devices utilizing the anomalous Nernst effect (ANE) have recently attracted interest. For high conversion efficiency, it is required that the material have a large ANE thermoelectric power and low electrical resistance, which lead to the conductivity of the ANE. ANE is usually explained in terms of intrinsic contributions from Berry curvature. Our observations suggest that extrinsic contributions also matter. Studying single-crystal manganese-bismuth (MnBi), we find a high ANE thermopower (∼10 µV/K) under 0.6 T at 80 K, and a transverse thermoelectric conductivity of over 40 A/Km. With insight from theoretical calculations, we attribute this large ANE predominantly to a new advective magnon contribution arising from magnon-electron spin-angular momentum transfer. We propose that introducing a large spin-orbit coupling into ferromagnetic materials may enhance the ANE through the extrinsic contribution of magnons.

2.
Sci Adv ; 7(15)2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33827817

RESUMO

Electrides are an unusual family of materials that feature loosely bonded electrons that occupy special interstitial sites and serve as anions. They are attracting increasing attention because of their wide range of exotic physical and chemical properties. Despite the critical role of the anionic electrons in inducing these properties, their presence has not been directly observed experimentally. Here, we visualize the columnar anionic electron density within the prototype electride Y5Si3 with sub-angstrom spatial resolution using differential phase-contrast imaging in a scanning transmission electron microscope. The data further reveal an unexpected charge variation at different anionic sites. Density functional theory simulations show that the presence of trace H impurities is the cause of this inhomogeneity. The visualization and quantification of charge inhomogeneities in crystals will serve as valuable input in future theoretical predictions and experimental analysis of exotic properties in electrides and materials beyond.

3.
Nat Mater ; 20(4): 451-452, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33462469
4.
Materials (Basel) ; 13(15)2020 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-32722569

RESUMO

Extrusion based additive manufacturing of polymer composite magnets can increase the solid loading volume fraction with greater mechanical force through the printing nozzle as compared to traditional injection molding process. About 63 vol% of isotropic NdFeB magnet powders were compounded with 37 vol% of polyphenylene sulfide and bonded permanent magnets were fabricated while using Big Area Additive Manufacturing without any degradation in magnetic properties. The polyphenylene sulfide bonded magnets have a tensile stress of 20 MPa, almost double than that of nylon bonded permanent magnets. Additively manufactured and surface-protective-resin coated bonded magnets meet the industrial stability criterion of up to 175 °C with a flux-loss of 2.35% over 1000 h. They also exhibit better corrosion resistance behavior when exposed to acidic (pH = 1.35) solution for 24 h and also annealed at 80 °C over 100 h (at 95% relative humidity) over without coated magnets. Thus, polyphenylene sulfide bonded, additively manufactured, protective resin coated bonded permanent magnets provide better thermal, mechanical, and magnetic properties.

5.
Phys Rev Lett ; 121(10): 105901, 2018 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-30240242

RESUMO

BAs was predicted to have an unusually high thermal conductivity with a room temperature value of 2000 W m^{-1} K^{-1}, comparable to that of diamond. However, the experimentally measured thermal conductivity of BAs single crystals is still lower than this value. To identify the origin of this large inconsistency, we investigate the lattice structure and potential defects in BAs single crystals at the atomic scale using aberration-corrected scanning transmission electron microscopy (STEM). Rather than finding a large concentration of As vacancies (V_{As}), as widely thought to dominate the thermal resistance in BAs, our STEM results show an enhanced intensity of some B columns and a reduced intensity of some As columns, suggesting the presence of antisite defects with As_{B} (As atom on a B site) and B_{As} (B atom on an As site). Additional calculations show that the antisite pair with As_{B} next to B_{As} is preferred energetically among the different types of point defects investigated and confirm that such defects lower the thermal conductivity for BAs. Using a concentration of 1.8(8)% (6.6±3.0×10^{20} cm^{-3} in density) for the antisite pairs estimated from STEM images, the thermal conductivity is estimated to be 65-100 W m^{-1} K^{-1}, in reasonable agreement with our measured value. Our study suggests that As_{B}-B_{As} antisite pairs are the primary lattice defects suppressing thermal conductivity of BAs. Possible approaches are proposed for the growth of high-quality crystals or films with high thermal conductivity. Employing a combination of state-of-the-art synthesis, STEM characterization, theory, and physical insight, this work models a path toward identifying and understanding defect-limited material functionality.

6.
Sci Rep ; 8(1): 13330, 2018 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-30190606

RESUMO

Triple-layered Sr4Ru3O10 is a unique ferromagnet with the central RuO6 layer behaving differently from two outer layers both crystallographically and magnetically. We report that the partial substitution of Ru by smaller Mn gives rise to modification in crystal structure, electronic and magnetic properties of Sr4(Ru1-xMnx)3O10. Through the single crystal X-ray diffraction refinement, we find that (Ru/Mn)O6 octahedral rotation is no longer detectable at x ≥ 0.23, leading to the tetragonal structure. The magnetization measurements indicate the ferromagnetic transition temperature TC decreases from 105 K for x = 0 to 30 K for x = 0.41, with the reduced magnetic moment as well. Remarkably, Mn doping results in the change of magnetic anisotropy from the easy c axis in x = 0 to the easy ab plane seen in x = 0.34 and 0.41. Such change also removes the ab-plane metamagnetic transition observed in x = 0. Furthermore, the electrical resistivity increases with increasing x showing semiconducting behavior with Δ ~ 10 meV for x = 0.34 and 30 meV for x = 0.41. Under applied magnetic field, the magnetoresistance exhibits negative and linear field dependence in all current and field configurations. These results clearly indicate Sr4(Ru1-xMnx)3O10 is a novel ferromagnetic semiconductor with exotic magnetotransport properties.

7.
Science ; 360(6396): 1455-1458, 2018 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-29954978

RESUMO

Solids with ultralow thermal conductivity are of great interest as thermal barrier coatings for insulation or thermoelectrics for energy conversion. However, the theoretical limits of lattice thermal conductivity (κ) are unclear. In typical crystals a phonon picture is valid, whereas lowest κ values occur in highly disordered materials where this picture fails and heat is supposedly carried by random walk among uncorrelated oscillators. Here we identify a simple crystal, Tl3VSe4, with a calculated phonon κ [0.16 Watts per meter-Kelvin (W/m-K)] one-half that of our measured κ (0.30 W/m-K) at 300 K, approaching disorder κ values, although Raman spectra, specific heat, and temperature dependence of κ reveal typical phonon characteristics. Adding a transport component based on uncorrelated oscillators explains the measured κ and suggests that a two-channel model is necessary for crystals with ultralow κ.

8.
Sci Rep ; 6: 35325, 2016 10 14.
Artigo em Inglês | MEDLINE | ID: mdl-27739477

RESUMO

Identifying and characterizing systems with coupled and competing interactions is central to the development of physical models that can accurately describe and predict emergent behavior in condensed matter systems. This work demonstrates that the metallic compound CuFe2Ge2 has competing magnetic ground states, which are shown to be strongly coupled to the lattice and easily manipulated using temperature and applied magnetic fields. Temperature-dependent magnetization M measurements reveal a ferromagnetic-like onset at 228 (1) K and a broad maximum in M near 180 K. Powder neutron diffraction confirms antiferromagnetic ordering below TN ≈ 175 K, and an incommensurate spin density wave is observed below ≈125 K. Coupled with the small refined moments (0.5-1 µB/Fe), this provides a picture of itinerant magnetism in CuFe2Ge2. The neutron diffraction data also reveal a coexistence of two magnetic phases that further highlights the near-degeneracy of various magnetic states. These results demonstrate that the ground state in CuFe2Ge2 can be easily manipulated by external forces, making it of particular interest for doping, pressure, and further theoretical studies.

9.
Sci Rep ; 6: 26179, 2016 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-27188715

RESUMO

The face centered cubic (fcc) alloy NiCoCrx with x ≈ 1 is found to be close to the Cr concentration where the ferromagnetic transition temperature, Tc, goes to 0. Near this composition these alloys exhibit a resistivity linear in temperature to 2 K, a linear magnetoresistance, an excess -TlnT (or power law) contribution to the low temperature heat capacity, and excess low temperature entropy. All of the low temperature electrical, magnetic and thermodynamic properties of the alloys with compositions near x ≈ 1 are not typical of a Fermi liquid and suggest strong magnetic fluctuations associated with a quantum critical region. The limit of extreme chemical disorder in this simple fcc material thus provides a novel and unique platform to study quantum critical behavior in a highly tunable system.

10.
Sci Rep ; 6: 19762, 2016 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-26818899

RESUMO

Transition-metal oxides often exhibit complex magnetic behavior due to the strong interplay between atomic-structure, electronic and magnetic degrees of freedom. Cobaltates, especially, exhibit complex behavior because of cobalt's ability to adopt various valence and spin state configurations. The case of the oxygen-deficient perovskite Sr3YCo4O10+x (SYCO) has attracted considerable attention because of persisting uncertainties about its structure and the origin of the observed room temperature ferromagnetism. Here we report a combined investigation of SYCO using aberration-corrected scanning transmission electron microscopy and density functional theory calculations. Guided by theoretical results on Co-O distances projected on different planes, the atomic-scale images of several different orientations, especially of the fully oxygenated planes, allow the unambiguous extraction of the underlying structure. The calculated magnetic properties of the new structure are in excellent agreement with the experimental data.

11.
Nat Commun ; 6: 8736, 2015 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-26507943

RESUMO

A grand challenge in materials research is to understand complex electronic correlation and non-equilibrium atomic interactions, and how such intrinsic properties and dynamic processes affect energy transfer and defect evolution in irradiated materials. Here we report that chemical disorder, with an increasing number of principal elements and/or altered concentrations of specific elements, in single-phase concentrated solid solution alloys can lead to substantial reduction in electron mean free path and orders of magnitude decrease in electrical and thermal conductivity. The subsequently slow energy dissipation affects defect dynamics at the early stages, and consequentially may result in less deleterious defects. Suppressed damage accumulation with increasing chemical disorder from pure nickel to binary and to more complex quaternary solid solutions is observed. Understanding and controlling energy dissipation and defect dynamics by altering alloy complexity may pave the way for new design principles of radiation-tolerant structural alloys for energy applications.

12.
Adv Mater ; 27(17): 2715-21, 2015 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-25809406

RESUMO

Lattice distortions corresponding to Ba displacements with respect to the FeAs sublattice are revealed to break the room-temperature tetragonal symmetry in Ba(Fe1-x Cox)2 As2. The displacements yield twin domains of the size of ≈10 nm. The domain size correlates with the magnitude of the local Fe magnetic moment and its non-monotonic dependence on Co concentration.

13.
Sci Rep ; 4: 7024, 2014 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-25387850

RESUMO

Hexagonal Fe(3)Sn has many of the desirable properties for a new permanent magnet phase with a Curie temperature of 725 K, a saturation moment of 1.18 MA/m. and anisotropy energy, K1 of 1.8 MJ/m(3). However, contrary to earlier experimental reports, we found both experimentally and theoretically that the easy magnetic axis lies in the hexagonal plane, which is undesirable for a permanent magnet material. One possibility for changing the easy axis direction is through alloying. We used first principles calculations to investigate the effect of elemental substitutions. The calculations showed that substitution on the Sn site has the potential to switch the easy axis direction. However, transition metal substitutions with Co or Mn do not have this effect. We attempted synthesis of a number of these alloys and found results in accord with the theoretical predictions for those that were formed. However, the alloys that could be readily made all showed an in-plane easy axis. The electronic structure of Fe(3)Sn is reported, as are some are magnetic and structural properties for the Fe(3)Sn(2), and Fe(5)Sn(3) compounds, which could be prepared as mm-sized single crystals.

14.
Adv Mater ; 26(35): 6193-8, 2014 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-25070045

RESUMO

The intrinsic Fe local magnetic moment and Fe orbital occupations of iron-based superconductors are unveiled through the local, real-space capability of aberration-corrected scanning transmission electron microscopy/electron energy loss spectroscopy (STEM/EELS). Although the ordering of Fe moments needs to be suppressed for superconductivity to arise, the local, fluctuating Fe magnetic moment is enhanced near optimal superconductivity.

15.
Sci Rep ; 3: 3073, 2013 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-24166292

RESUMO

Particularly in Sr2IrO4, the interplay between spin-orbit coupling, bandwidth and on-site Coulomb repulsion stabilizes a J(eff) = 1/2 spin-orbital entangled insulating state at low temperatures. Whether this insulating phase is Mott- or Slater-type, has been under intense debate. We address this issue via spatially resolved imaging and spectroscopic studies of the Sr2IrO4 surface using scanning tunneling microscopy/spectroscopy (STM/S). STS results clearly illustrate the opening of an insulating gap (150 ~ 250 meV) below the Néel temperature (TN), in qualitative agreement with our density-functional theory (DFT) calculations. More importantly, the temperature dependence of the gap is qualitatively consistent with our DFT + dynamical mean field theory (DMFT) results, both showing a continuous transition from a gapped insulating ground state to a non-gap phase as temperatures approach TN. These results indicate a significant Slater character of gap formation, thus suggesting that Sr2IrO4 is a uniquely correlated system, where Slater and Mott-Hubbard-type behaviors coexist.

16.
Nanotechnology ; 24(41): 415707, 2013 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-24060841

RESUMO

Scanning probe microscopy has emerged as a powerful and flexible tool for atomically resolved imaging of surface structures. However, due to the amount of information extracted, in many cases the interpretation of such data is limited to being qualitative and semi-quantitative in nature. At the same time, much can be learned from local atom parameters, such as distances and angles, that can be analyzed and interpreted as variations of local chemical bonding, or order parameter fields. Here, we demonstrate an iterative algorithm for indexing and determining atomic positions that allows the analysis of inhomogeneous surfaces. This approach is further illustrated by local crystallographic analysis of several real surfaces, including highly ordered pyrolytic graphite and an Fe-based superconductor FeTe0.55Se0.45. This study provides a new pathway to extract and quantify local properties for scanning probe microscopy images.

17.
ACS Nano ; 7(3): 2634-41, 2013 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-23413999

RESUMO

The relationship between atomically defined structures and physical properties in functional materials remains a subject of constant interest. We explore the interplay between local crystallographic structure, composition, and local superconductive properties in iron chalcogenide superconductors. Direct structural analysis of scanning tunneling microscopy data allows local lattice distortions and structural defects across an FeTe0.55Se0.45 surface to be explored on a single unit-cell level. Concurrent superconducting gap (SG) mapping reveals suppression of the SG at well-defined structural defects, identified as a local structural distortion. The strong structural distortion causes the vanishing of the superconducting state. This study provides insight into the origins of superconductivity in iron chalcogenides by providing an example of atomic-level studies of the structure-property relationship.

18.
Phys Rev Lett ; 109(7): 077003, 2012 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-23006396

RESUMO

The relationship between vacancy ordering and magnetism in TlFe(1.6)Se(2) has been investigated via single crystal neutron diffraction, nuclear forward scattering, and transmission electron microscopy. The examination of chemically and structurally homogeneous crystals allows the true ground state to be revealed, which is characterized by Fe moments lying in the ab plane below 100 K. This is in sharp contrast to crystals containing regions of order and disorder, where a competition between c axis and ab plane orientations of the moments is observed. The properties of partially disordered TlFe(1.6)Se(2) are, therefore, not associated with solely the ordered or disordered regions. This contrasts the viewpoint that phase separation results in independent physical properties in intercalated iron selenides, suggesting a coupling between ordered and disordered regions may play an important role in the superconducting analogues.

19.
Inorg Chem ; 51(15): 8502-8, 2012 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-22835000

RESUMO

The crystallographic and physical properties of TbRuAsO and DyRuAsO at and below room temperature are reported, including full structure refinements from powder X-ray diffraction data and measured electrical and thermal transport properties, magnetic susceptibility, and heat capacity. Both compounds are isostructural to LaFeAsO (ZrCuSiAs-type, P4/nmm) at room temperature. However, DyRuAsO undergoes a symmetry-lowering crystallographic phase transition near 25 K, and adopts an orthorhombic structure (Pmmn) below this temperature. This structural distortion is unlike those observed in the analogous Fe compounds. Magnetic phase transitions are observed in both compounds which suggest antiferromagnetic ordering of lanthanide moments occurs near 7.0 K in TbRuAsO and 10.5 K in DyRuAsO. The nature of the structural distortion as well as thermal conductivity and heat capacity behaviors indicate strong coupling between the magnetism and the lattice. The behaviors of both materials show magnetic ordering of small moments on Ru may occur at low temperatures.

20.
Adv Mater ; 24(29): 3965-9, 2012 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-22718520

RESUMO

The high dielectric constant of doped ferroelectric KTa(1-x)Nb(x)O(3) is shown to increase dielectric screening of electron scatterers, and thus to enhance the electronic mobility, overcoming one of the key limitations in the application of functional oxides. These observations are based on transport and optical measurements as well as band structure calculations.


Assuntos
Eletrônica , Óxidos/química , Elétrons , Magnetismo , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...