Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cell Death Discov ; 2: 16017, 2016 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-27275396

RESUMO

In vertebrates, 14-3-3 proteins form a family of seven highly conserved isoforms with chaperone activity, which bind phosphorylated substrates mostly involved in regulatory and checkpoint pathways. 14-3-3 proteins are the most abundant protein in the brain and are abundantly found in the cerebrospinal fluid in neurodegenerative diseases, suggesting a critical role in neuron physiology and death. Here we show that 14-3-3eta-deficient mice displayed auditory impairment accompanied by cochlear hair cells' degeneration. We show that 14-3-3eta is highly expressed in the outer and inner hair cells, spiral ganglion neurons of cochlea and retinal ganglion cells. Screening of YWHAH, the gene encoding the 14-3-3eta isoform, in non-syndromic and syndromic deafness, revealed seven non-synonymous variants never reported before. Among them, two were predicted to be damaging in families with syndromic deafness. In vitro, variants of YWHAH induce mild mitochondrial fragmentation and severe susceptibility to apoptosis, in agreement with a reduced capacity of mutated 14-3-3eta to bind the pro-apoptotic Bad protein. This study demonstrates that YWHAH variants can have a substantial effect on 14-3-3eta function and that 14-3-3eta could be a critical factor in the survival of outer hair cells.

2.
Br J Pharmacol ; 167(4): 905-16, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22624822

RESUMO

BACKGROUND AND PURPOSE: Betahistine, the main histamine drug prescribed to treat vestibular disorders, is a histamine H(3) receptor antagonist. Here, we explored the potential for modulation of the most recently cloned histamine receptor (H(4) receptor) to influence vestibular system function, using a selective H(4) receptor antagonist JNJ 7777120 and the derivate compound JNJ 10191584. EXPERIMENTAL APPROACH: RT-PCR was used to assess the presence of H(4) receptors in rat primary vestibular neurons. In vitro electrophysiological recordings and in vivo behavioural approaches using specific antagonists were employed to examine the effect of H(4) receptor modulation in the rat vestibular system. KEY RESULTS: The transcripts of H(4) and H(3) receptors were present in rat vestibular ganglia. Application of betahistine inhibited the evoked action potential firing starting at micromolar range, accompanied by subsequent strong neuronal depolarization at higher concentrations. Conversely, reversible inhibitory effects elicited by JNJ 10191584 and JNJ 7777120 began in the nanomolar range, without inducing neuronal depolarization. This effect was reversed by application of the selective H(4) receptor agonist 4-methylhistamine. Thioperamide, a H(3) /H(4) receptor antagonist, exerted effects similar to those of H(3) and H(4) receptor antagonists, namely inhibition of firing at nanomolar range and membrane depolarization above 100 µM. H(4) receptor antagonists significantly alleviated the vestibular deficits induced in rats, while neither betahistine nor thioperamide had significant effects. CONCLUSIONS AND IMPLICATIONS: H(4) receptor antagonists have a pronounced inhibitory effect on vestibular neuron activity. This result highlights the potential role of H(4) receptors as pharmacological targets for the treatment of vestibular disorders.


Assuntos
Antagonistas dos Receptores Histamínicos/farmacologia , Neurônios/efeitos dos fármacos , Receptores Acoplados a Proteínas G/fisiologia , Receptores Histamínicos/fisiologia , Nervo Vestibular/fisiologia , Animais , Benzimidazóis/farmacologia , beta-Histina/farmacologia , Células Cultivadas , Feminino , Agonistas dos Receptores Histamínicos/farmacologia , Antagonistas dos Receptores Histamínicos H3/farmacologia , Indóis/farmacologia , Neurônios/fisiologia , Piperazinas/farmacologia , Piperidinas/farmacologia , Ratos , Ratos Long-Evans , Ratos Wistar , Receptores Histamínicos H4 , Nervo Vestibular/citologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...