Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Trauma Acute Care Surg ; 92(3): 542-552, 2022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-34797814

RESUMO

BACKGROUND: Mesenchymal stromal cells (MSCs) express surface tissue factor (TF), which may affect hemostasis and detract from therapeutic outcomes of MSCs if administered intravenously. In this study, we determine a safe dose of MSCs for intravenous (IV) administration and further demonstrate the impact of IV-MSC on acute traumatic coagulopathy (ATC) in rats. METHODS: Tissue factor expression of rat bone marrow-derived mesenchymal stromal cell (BMSC) or adipose-derived mesenchymal stromal cell (AMSC) was detected by immunohistochemistry and enzyme-linked immunosorbent assay. The coagulation properties were measured in MSC-treated rat whole blood, and blood samples were collected from rats after IV administration of MSCs. Acute traumatic coagulopathy rats underwent polytrauma and 40% hemorrhage, followed by IV administration of 5 or 10 million/kg BMSCs (BMSC-5, BMSC-10), or vehicle at 1 hour after trauma. RESULTS: Rat MSCs expressed TF, and incubation of rat BMSCs or AMSCs with whole blood in vitro led to a significantly shortened clotting time. However, a dose-dependent prolongation of prothrombin time with reduction in platelet counts and fibrinogen was found in healthy rat treated with IV-MSCs. Bone marrow-derived mesenchymal stromal cells at 5 million/kg or less led to minimal effect on hemostasis. Mesenchymal stromal cells were not found in circulation but in the lungs after IV administration regardless of the dosage. Acute traumatic coagulopathy with prolonged prothrombin time was not significantly affected by 5 or 10 million/kg BMSCs. Intravenous administration of 10 million/kg BMSCs led to significantly lower fibrinogen and platelet counts, while significantly higher levels of lactate, wet/dry weight ratio, and leukocyte infiltration in the lung were present compared with BMSC-5 or vehicle. No differences were seen in immune or inflammatory profiles with BMSC treatment in ATC rats, at least in the acute timeframe. CONCLUSION: Intravenous administration of MSCs leads to a risk of coagulopathy associated with a dose-dependent reduction in platelet counts and fibrinogen and is incapable of restoring hemostasis of rats with ATC after polytrauma and hemorrhagic shock.


Assuntos
Transtornos da Coagulação Sanguínea/etiologia , Transplante de Células-Tronco Mesenquimais , Traumatismo Múltiplo/sangue , Choque Hemorrágico/sangue , Tromboplastina/metabolismo , Administração Intravenosa , Animais , Testes de Coagulação Sanguínea , Modelos Animais de Doenças , Contagem de Plaquetas , Ratos
2.
J Trauma Acute Care Surg ; 91(2S Suppl 2): S81-S88, 2021 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-34108422

RESUMO

BACKGROUND: Extracellular vesicles (EVs) isolated from cardiosphere-derived cells (CDC-EVs) are coming to light as a unique cell-free therapeutic. Because of their novelty, however, there still exist prominent gaps in knowledge regarding their therapeutic potential. Herein the therapeutic potential of CDC-EVs in a rat model of acute traumatic coagulopathy induced by multiple injuries and hemorrhagic shock is outlined. METHODS: Extracellular vesicle surface expression of procoagulant molecules (tissue factor and phosphatidylserine) was evaluated by flow cytometry. Extracellular vesicle thrombogenicity was tested using calibrated thrombogram, and clotting parameters were assessed using a flow-based adhesion model simulating blood flow over a collagen-expressing surface. The therapeutic efficacy of EVs was then determined in a rat model of acute traumatic coagulopathy induced by multiple injuries and hemorrhagic shock. RESULTS: Extracellular vesicles isolated from cardiosphere-derived cells are not functionally procoagulant and do not interfere with platelet function. In a rat model of multiple injuries and hemorrhagic shock, early administration of EVs significantly reduced the elevation of lactate and creatinine and did not significantly enhance coagulopathy in rats with acute traumatic coagulopathy. CONCLUSION: The results of this study are of great relevance to the development of EV products for use in combat casualty care, as our studies show that CDC-EVs have the potential to be an antishock therapeutic if administered early. These results demonstrate that research using CDC-EVs in trauma care needs to be considered and expanded beyond their reported cardioprotective benefits.


Assuntos
Vesículas Extracelulares/transplante , Traumatismo Múltiplo/terapia , Miocárdio/citologia , Choque Hemorrágico/terapia , Animais , Glicemia/análise , Creatinina/sangue , Modelos Animais de Doenças , Citometria de Fluxo , Escala de Gravidade do Ferimento , Ácido Láctico/sangue , Masculino , Tempo de Protrombina , Ratos , Ratos Sprague-Dawley
3.
J Trauma Acute Care Surg ; 91(2S Suppl 2): S65-S73, 2021 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-34039924

RESUMO

BACKGROUND: We sought to determine the extent of loss of endothelial basement membrane (BM), leukocyte recruitment, and changes in coagulation after hemorrhagic shock, followed by limited-volume resuscitation (LVR) with 5% albumin (ALB). METHODS: Anesthetized rats were bled 40% of blood volume and assigned to treatment groups: untreated (n = 6), LVR with normal saline (NS; n = 8), or LVR with ALB (n = 8). Sham rats (n = 6) underwent all procedures except hemorrhage or resuscitation. Blood samples were assayed for active proteases, such as metalloproteinase 9 (MMP-9) and a disintegrin and metalloproteinase 10 (ADAM-10), BM-type heparan sulfate proteoglycan (perlecan), cell count, and coagulation function. Leukocyte transmigration was used to estimate the net efficiency of leukocyte recruitment in cremaster venules. RESULTS: Hemorrhage significantly lowered red cell count, but white cell and platelet counts did not change (vs. sham). Ionized calcium in plasma was significantly reduced in untreated and remained so after NS. In contrast, ionized calcium was normalized after ALB. Plasma expansion after NS and ALB further reduced leukocyte and platelet counts. Metalloproteinase 9, ADAM-10, and perlecan were significantly higher in untreated rats (vs. sham). Albumin normalized MMP-9, ADAM-10, and perlecan levels, while NS further increased MMP-9, ADAM-10, and perlecan (vs. sham). Transmigrated leukocytes doubled in the untreated group and remained elevated after NS (vs. sham) but normalized after ALB. Albumin reduced every stage of the leukocyte recruitment process to sham levels. CONCLUSION: Despite similar plasma expansion, NS weakened platelet function contrary to ALB. Plasma expansion with ALB resulted in restoration of BM integrity and attenuation of leukocyte recruitment to tissues, in contrast to NS. Albumin plays a critical role in restoring BM integrity, attenuating leukocyte recruitment to tissues, and optimizing hemostasis by increasing ionized calcium in plasma.


Assuntos
Albuminas/uso terapêutico , Membrana Basal/efeitos dos fármacos , Endotélio Vascular/efeitos dos fármacos , Hemostasia/efeitos dos fármacos , Choque Hemorrágico/metabolismo , Animais , Membrana Basal/metabolismo , Membrana Basal/fisiopatologia , Contagem de Células Sanguíneas , Modelos Animais de Doenças , Endotélio Vascular/metabolismo , Endotélio Vascular/fisiopatologia , Hemodinâmica/efeitos dos fármacos , Hemodinâmica/fisiologia , Hemostasia/fisiologia , Leucócitos/metabolismo , Masculino , Ratos , Ratos Sprague-Dawley , Ressuscitação/métodos , Choque Hemorrágico/patologia , Choque Hemorrágico/terapia
4.
J Immunol Methods ; 492: 113000, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33609532

RESUMO

BACKGROUND: Immunomodulation by mesenchymal stromal cells (MSCs) is a potentially important therapeutic modality. MSCs suppress peripheral blood mononuclear cell (PBMC) proliferation in vitro, suggesting a mechanism for suppressing inflammatory responses in vivo. This study details the interactions of PBMCs and MSCs. METHODS: Pooled human PBMCs and MSCs were co-cultured at different MSC:PBMC ratios and harvested from 0 to 120 h, with and without phytohaemagglutin A (PHA) stimulation. Proliferation of adherent MSCs and non-adherent PBMCs was assessed by quantitation of ATP levels. PBMC surface marker expression was analyzed by flow cytometry. Indoleamine 2,3-dioxygenase (IDO) activity was determined by kynurenine assay and IDO mRNA by RT-PCR. Cytokine release was measured by ELISA. Immunofluorescent microscopy detected MSC, PBMC, monocyte (CD14+) and apoptotic events. RESULTS: PBMC proliferation in response to PHA gave a robust ATP signal by 72 h, which was suppressed by co-culture with densely plated MSCs. Very low level MSC seeding densities relative to PBMC number reproducibly stimulated PBMC proliferation. The CD4+/CD3+ population significantly decreased over time while the CD8+/CD3+ population significantly increased. No change in CD4+/CD8+ ratio is seen with high density MSC co-culture; very low density MSCs augment the changes seen in PHA stimulated PBMCs alone. IDO activity in MSCs co-cultured with PBMCs correlated with PBMC suppression. MSCs increased the secretion of IL-10 and IL-6 from stimulated co-cultures and decreased TNF-α secretion. In stimulated co-culture, low density MSCs decreased in number; fluorescence immunomicroscopy detected association of PBMC with MSC and phosphatidyl serine externalization in both cell populations. CONCLUSIONS: A bidirectional interaction between MSCs and PBMCs occurs during co-culture. High numbers of MSCs inhibit PHA-stimulated PBMC proliferation and the PBMC response to stimulation; low numbers of MSCs augment these responses. Low density MSCs are susceptible to attrition, apparently by PBMC-induced apoptosis. These results may have direct application when considering therapeutic dosing of patients; low MSC doses may have unintended detrimental consequences.


Assuntos
Comunicação Celular/imunologia , Leucócitos Mononucleares/imunologia , Células-Tronco Mesenquimais/imunologia , Cultura Primária de Células/métodos , Proliferação de Células/efeitos dos fármacos , Transplante de Células , Técnicas de Cocultura/métodos , Humanos , Leucócitos Mononucleares/transplante , Mitógenos/farmacologia , Fito-Hemaglutininas/farmacologia
5.
J Trauma Acute Care Surg ; 89(2S Suppl 2): S109-S117, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32744836

RESUMO

BACKGROUND: There is broad interest in the use of cell therapies and cell products for treatment of a variety of diseases and problems. Of interest to the military, cellular therapies have the potential to confer tremendous benefit for treatment of both acute and chronic injuries. Although many different cell therapy products are currently under investigation, mesenchymal stromal cells (MSCs) are good candidates, based on their ability to respond to inflammation, limit vascular permeability, and modulate immune responses to injury. Although a large number of clinical trials utilize MSCs or their products, there is no firm consensus defining the characteristics and activities of a good MSC product. Here, we test multiple human MSCs in several assays designed to test potency, to determine if functionally relevant differences between MSCs can be defined using in vitro assays, allowing identification of superior MSC products for preclinical or clinical testing. METHODS: Human MSCs derived from several tissue sources (adipose, bone marrow, umbilical cord) were evaluated for their ability to respond to inflammatory signaling by upregulating indoleamine-2,3-dioxygenase and TSG6, suppress lymphocyte proliferation, alter the polarization of macrophages, and affect tube formation by endothelial cells. RESULTS: All MSCs tested displayed activity in the functional assays utilized, but differences in potency were observed in each assay. CONCLUSION: The indoleamine-2,3-dioxygenase enzyme activity assay represents a simple way to screen multiple samples. The mixed lymphocyte reaction and monocyte assays used to test interactions between MSCs and immune cells are more involved but give direct information on immunomodulation potential. The endothelial cell tube formation assay is relatively simple to perform but a large number of images must be generated and analyzed. However, it tests a functional activity other than immunomodulation and, therefore, adds another facet to MSC evaluation.


Assuntos
Células Endoteliais/metabolismo , Células Endoteliais da Veia Umbilical Humana/fisiologia , Indolamina-Pirrol 2,3,-Dioxigenase/metabolismo , Células-Tronco Mesenquimais/metabolismo , Tecido Adiposo/citologia , Células da Medula Óssea/metabolismo , Células Cultivadas , Expressão Gênica , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Imunomodulação , Medicina Militar
6.
Transfusion ; 60 Suppl 3: S112-S118, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32478925

RESUMO

BACKGROUND: Cold-stored platelets are an attractive option for treatment of actively bleeding patients due to a reduced risk of septic complications and preserved hemostatic function compared to conventional room temperature-stored platelets. However, refrigeration causes increased platelet activation and aggregate formation. Specialized pro-resolving mediators (SPMs), cell signaling mediators biosynthesized from essential fatty acids, have been shown to modulate platelet function and activation. In this study, we sought to determine if SPMs could be used to inhibit cold-stored platelet activation. METHODS: Platelets were collected from healthy donors (n = 4-7) and treated with SPMs (resolvin E1 [RvE1], maresin 1 [MaR1], and resolvin D2 [RvD2]) or vehicle (VEH; 0.1% EtOH). Platelets were stored without agitation in the cold and assayed on Days 0 and 7 of storage for platelet activation levels using flow cytometry, platelet count, aggregation response using impedance aggregometry, and nucleotide content using mass spectrometry. RESULTS: Compared to VEH, SPM treatment inhibited GPIb shedding (all compounds), significantly reduced both PS exposure and activation of GPIIb/IIIa receptor (RvD2, MaR1), and preserved aggregation response to TRAP (RvD2, MaR1) after 7 days of storage. Similar to untreated cold-stored platelets, SPM-treated samples did not preserve platelet counts or block the release of P-Selectin. Nucleotide content was unaffected by SPM treatment in cold-stored platelets. CONCLUSIONS: SPM treatment, particularly Mar1 and RvD2, led to reduced platelet activation and preserved platelet function after 7 days of storage in the cold. Future work is warranted to better elucidate the mechanism of action of SPMs on cold platelet function and activation.


Assuntos
Plaquetas/efeitos dos fármacos , Preservação de Sangue/métodos , Ácidos Docosa-Hexaenoicos/farmacologia , Ácido Eicosapentaenoico/análogos & derivados , Plaquetas/citologia , Plaquetas/metabolismo , Temperatura Baixa , Ácidos Docosa-Hexaenoicos/química , Ácido Eicosapentaenoico/química , Ácido Eicosapentaenoico/farmacologia , Humanos , Nucleotídeos/metabolismo , Ativação Plaquetária/efeitos dos fármacos , Agregação Plaquetária/efeitos dos fármacos , Complexo Glicoproteico GPIIb-IIIa de Plaquetas/metabolismo
7.
Transfusion ; 59(S2): 1593-1600, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30980752

RESUMO

BACKGROUND: Cellular therapeutic agents may benefit trauma patients by modulating the immune response to injury, and by reducing inflammation and vascular leakage. Administration of allogeneic mesenchymal stromal cells (MSCs) shows some benefit in preclinical and clinical trials, but less testing has been performed with other cell types. Human primary fibroblasts (FBs) were compared to MSCs in assays designed to evaluate MSCs to determine if these assays actually evaluate properties unique to MSCs or whether related cell types perform similarly. STUDY DESIGN AND METHODS: MSC-related surface marker expression, tissue factor, and human leukocyte antigen-D related were evaluated by flow cytometry, and in vitro adipogenic and osteogenic differentiation potential were determined. Procoagulant activity was determined by thromboelastography. Two potency assays correlated with immunomodulation potential were utilized: the mixed lymphocyte reaction and indoleamine 2,3-dioxygenase enzyme activity assays. RESULTS: Human primary FBs performed similarly to MSCs in assays designed to evaluate MSC characteristics and potency. Although similar for MSC-positive cell surface marker expression, FBs did not show robust adipose differentiation and expressed some level of markers not expected on MSCs. CONCLUSIONS: Human primary FBs are very similar to human MSCs, at least in assays currently used to evaluate MSC potency. Preclinical and clinical testing are required to determine if FBs show similar activity to MSCs in vivo. If FBs show inferior activity in vivo, development of new MSC-specific potency assays will be necessary to evaluate properties relevant to their unique clinical benefits.


Assuntos
Diferenciação Celular , Fibroblastos/metabolismo , Imunomodulação , Células-Tronco Mesenquimais/metabolismo , Osteogênese , Técnicas de Cultura de Células , Linhagem Celular , Fibroblastos/citologia , Fibroblastos/imunologia , Humanos , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/imunologia
8.
Transfusion ; 59(5): 1789-1798, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30725491

RESUMO

BACKGROUND: Using platelet additive solution (PAS) to dilute fibrinogen during long-term cold storage of platelets (PLTs) decreases PLT activation and increases functional PLT shelf life. We performed a randomized, paired study to assess the in vitro quality of PLTs stored in the cold in T-PAS+ for up to 18 days evaluated against PLTs stored under currently allowable conditions (5-day room temperature-stored PLTs [RTP] and 3-day cold-stored PLTs [CSP]). STUDY DESIGN AND METHODS: PLTs were collected from healthy volunteers (n = 10) and diluted to 65% T-PAS+/35% plasma before cold storage. Double-dose apheresis PLTs (in 100% plasma) were collected from the same donors and split into two bags (one bag RTP, one bag CSP). All bags were sampled on the day of collection (Day 0). CSP and RTP bags were sampled on Days 3 and 5, respectively. T-PAS+ samples were assessed on Days 3, 5, 14, 16, and 18 of storage for metabolism, hemostatic function, and activation. RESULTS: After 18 days of storage in T-PAS+, pH was 6.71 ± 0.04, PLT count was comparable to Day 3 CSP, PLT function (aggregation and clot strength) was comparable to Day 5 RTP, and PLT activation was significantly increased. CONCLUSION: Refrigerated PLTs stored in T-PAS+ for 18 days met FDA pH standards. Functional metrics suggest activity of T-PAS+-stored PLTs and the potential to contribute to hemostasis throughout 18 days of storage. Extending the shelf life of PLTs would increase access to hemostatic resuscitation for bleeding patients in military and civilian settings.


Assuntos
Plaquetas/citologia , Plaquetoferese/métodos , Refrigeração , Hemorragia/terapia , Humanos , Espectrometria de Massas , Pressão Osmótica , Temperatura , Fatores de Tempo
9.
Crit Care ; 21(1): 160, 2017 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-28659186

RESUMO

BACKGROUND: Restoration of endothelial glycocalyx (EG) barrier may be an essential therapeutic target for successful resuscitation. The aim of this study was to compare in vivo the effects of resuscitation with normal saline (NS) to lactated Ringer's solution (LR), 5% albumin and fresh frozen plasma (FFP) on their ability to maintain EG and barrier function integrity, mitigate endothelial injury and inflammation, and restore vascular homeostasis after hemorrhagic shock. METHODS: Anesthetized rats (N = 36) were subjected to hemorrhagic shock (bled 40% of total blood volume), followed by resuscitation with 45 ml/kg NS or LR, or 15 ml/kg 5% albumin or FFP. Microhemodynamics, EG thickness, permeability, leukocyte rolling and adhesion were assessed in >180 vessels from cremaster muscle, as well as systemic measures. RESULTS: After hypotensive resuscitation, arterial pressure was 25% lower than baseline in all cohorts. Unlike FFP, resuscitation with crystalloids failed to restore EG thickness to baseline post shock and shedding of glycocalyx proteoglycan was significantly higher after NS. NS decreased blood flow and shear, and markedly increased permeability and leukocyte rolling/adhesion. In contrast, LR had lesser effects on increased permeability and leukocyte rolling. Albumin stabilized permeability and white blood cell (WBC) rolling/adhesion post shock, comparable to FFP. CONCLUSIONS: Resuscitation with NS failed to inhibit syndecan-1 shedding and to repair the EG, which led to loss of endothelial barrier function (edema), decline in tissue perfusion and pronounced leukocyte rolling and adhesion. Detrimental effects of NS on endothelial and microvascular stabilization post shock may provide a pathophysiological basis to understand and prevent morbidity associated with iatrogenic resuscitation after hemorrhagic shock.


Assuntos
Hidratação/normas , Hemorragia/terapia , Ressuscitação/métodos , Análise de Variância , Animais , Coloides/uso terapêutico , Soluções Cristaloides , Modelos Animais de Doenças , Endotélio/efeitos dos fármacos , Endotélio/fisiopatologia , Hidratação/métodos , Glicocálix/efeitos dos fármacos , Glicocálix/metabolismo , Glicocálix/fisiologia , Hemorragia/fisiopatologia , Soluções Isotônicas/uso terapêutico , Masculino , Ratos , Ratos Sprague-Dawley , Ressuscitação/normas , Cloreto de Sódio/uso terapêutico
10.
Shock ; 48(5): 583-589, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28489728

RESUMO

INTRODUCTION: There is interest in the small-volume therapeutic use of adjunct drugs for treating hemorrhagic shock (HS). However, critical information is only partially available on mechanisms of action of promising compounds such as adenosine-lidocaine-magnesium (ALM), beta-hydroxybutyrate plus melatonin (BHB/M), and poloxamer 188 (P-188). Therefore, we tested the hypothesis that these adjuncts would reverse HS-induced damage to microvascular endothelial glycocalyx and hemodynamics. METHODS: After baseline, 40% of total blood volume was removed from 44 anesthetized Sprague-Dawley male rats. One hour after hemorrhage, animals were resuscitated using ALM, BHB/M, or P-188 followed by lactated Ringer's (LR, 15 mL/kg). Control animals were not treated (SHAM) or received LR alone. Sampled blood was used to quantify shed syndecan-1 in plasma; multiple systemic physiological parameters were recorded. In vivo glycocalyx thickness, microvascular permeability, and microhemodynamics were evaluated in >200 cremaster venules using intravital videomicroscopy. RESULTS: Compared with baseline, resuscitation using adjuncts was associated with glycocalyx restoration of 97 ±â€Š9% (ALM), 75 ±â€Š8% (BHB/M), and 85 ±â€Š5% (P-188): significantly higher than LR-only (56 ±â€Š4%). Significantly better permeability, similar to SHAM values, was measured after ALM and P-188, and low plasma syndecan-1 levels were measured after resuscitation with all adjuncts. Microhemodynamic changes were relatively small while systemic parameters such as mean arterial pressure and lactate improved but remained below or above the baseline, respectively, as expected from this hypotensive resuscitation model. CONCLUSION: The drugs ALM, BHB/M, and P-188 provide beneficial effects as adjuncts to hypotensive resuscitation in this HS model by mechanisms involving changes at the microvascular level including the glycocalyx.


Assuntos
Choque Hemorrágico/sangue , Sindecana-1/sangue , Animais , Modelos Animais de Doenças , Glicocálix/metabolismo , Hemodinâmica/fisiologia , Masculino , Ratos , Ratos Sprague-Dawley
11.
Am J Physiol Heart Circ Physiol ; 310(11): H1468-78, 2016 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-27037369

RESUMO

The endothelial glycocalyx plays an essential role in many physiological functions and is damaged after hemorrhage. Fluid resuscitation may further change the glycocalyx after an initial hemorrhage-induced degradation. Plasma levels of syndecan-1 and heparan sulfate have been used as indirect markers for glycocalyx degradation, but the extent to which these measures are representative of the events in the microcirculation is unknown. Using hemorrhage and a wide range of resuscitation fluids, we studied quantitatively the relationship between plasma biomarkers and changes in microvascular parameters, including glycocalyx thickness. Rats were bled 40% of total blood volume and resuscitated with seven different fluids (fresh whole blood, blood products, and crystalloids). Intravital microscopy was used to estimate glycocalyx thickness in >270 postcapillary venules from 58 cremaster preparations in 9 animal groups; other microvascular parameters were measured using noninvasive techniques. Systemic physiological parameters and blood chemistry were simultaneously collected. Changes in glycocalyx thickness were negatively correlated with changes in plasma levels of syndecan-1 (r = -0.937) and heparan sulfate (r = -0.864). Changes in microvascular permeability were positively correlated with changes in both plasma biomarkers (r = 0.8, P < 0.05). Syndecan-1 and heparan sulfate were also positively correlated (r = 0.7, P < 0.05). Except for diameter and permeability, changes in local microcirculatory parameters (red blood cell velocity, blood flow, and wall shear rate) did not correlate with plasma biomarkers or glycocalyx thickness changes. This work provides a quantitative framework supporting plasma syndecan-1 and heparan sulfate as valuable clinical biomarkers of glycocalyx shedding that may be useful in guiding resuscitation strategies following hemorrhage.


Assuntos
Músculos Abdominais/irrigação sanguínea , Glicocálix/metabolismo , Heparitina Sulfato/sangue , Substitutos do Plasma/farmacologia , Ressuscitação/métodos , Choque Hemorrágico/terapia , Sindecana-1/sangue , Vênulas/metabolismo , Animais , Biomarcadores/sangue , Permeabilidade Capilar , Dextranos/metabolismo , Modelos Animais de Doenças , Fluoresceína-5-Isotiocianato/análogos & derivados , Fluoresceína-5-Isotiocianato/metabolismo , Glicocálix/patologia , Masculino , Proteólise , Ratos Sprague-Dawley , Choque Hemorrágico/sangue , Choque Hemorrágico/patologia , Choque Hemorrágico/fisiopatologia , Vênulas/patologia
12.
Biochem Biophys Res Commun ; 444(3): 433-8, 2014 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-24472539

RESUMO

Staphylococcus aureus is a versatile pathogen capable of causing a broad spectrum of diseases ranging from superficial skin infections to life threatening conditions such as endocarditis, septicemia, pneumonia and toxic shock syndrome. In vitro and in vivo studies identified an exotoxin, α-toxin, as a major cause of S. aureus toxicity. Because S. aureus has rapidly evolved resistance to a number of antibiotics, including methicillin, it is important to identify new therapeutic strategies, other than antibiotics, for inhibiting the harmful effects of this pathogen. Aptamers are single-stranded DNA or RNA oligonucleotides with three-dimensional folded conformations that bind with high affinity and selectivity to targets and modulate their biological functions. The goal of this study was to isolate DNA aptamers that specifically inhibit the cytotoxic activity of α-toxin. After 10 rounds of Systematic Evolution of Ligands by EXponential Enrichment (SELEX), 49 potential anti-α-toxin aptamers were identified. In vitro neutralization assays demonstrated that 4 of these 49 aptamers, AT-27, AT-33, AT-36, and AT-49, significantly inhibited α-toxin-mediated cell death in Jurkat T cells. Furthermore, RT-PCR analysis revealed that α-toxin increased the transcription of the inflammatory cytokines TNF-α and IL-17 and that anti-α-toxin aptamers AT-33 and AT-36 inhibited the upregulation of these genes. Collectively, the data suggest the feasibility of generating functionally effective aptamers against α-toxin for treatment of S. aureus infections.


Assuntos
Aptâmeros de Nucleotídeos/farmacologia , Toxinas Bacterianas/antagonistas & inibidores , Exotoxinas/antagonistas & inibidores , Proteínas Hemolisinas/antagonistas & inibidores , Staphylococcus aureus/química , Humanos , Células Jurkat , Técnica de Seleção de Aptâmeros
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...