Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Protein J ; 43(3): 393-404, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38507106

RESUMO

Biological macromolecules are found in different shapes and sizes. Among these, enzymes catalyze biochemical reactions and are essential in all organisms, but is there a limit size for them to function properly? Large enzymes such as catalases have hundreds of kDa and are formed by multiple subunits, whereas most enzymes are smaller, with molecular weights of 20-60 kDa. Enzymes smaller than 10 kDa could be called microenzymes and the present literature review brings together evidence of their occurrence in nature. Additionally, bioactive peptides could be a natural source for novel microenzymes hidden in larger peptides and molecular downsizing could be useful to engineer artificial enzymes with low molecular weight improving their stability and heterologous expression. An integrative approach is crucial to discover and determine the amino acid sequences of novel microenzymes, together with their genomic identification and their biochemical biological and evolutionary functions.


Assuntos
Enzimas , Enzimas/química , Enzimas/genética , Enzimas/metabolismo , Humanos , Peso Molecular , Animais , Peptídeos/química , Peptídeos/metabolismo
2.
Appl Biochem Biotechnol ; 194(2): 848-861, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34553326

RESUMO

Pectinases are widely used in a variety of industrial processes. However, their application is limited by low catalytic processivity, reduced stability, high cost, and poor re-use compatibility. These drawbacks may be overcome by enzyme immobilization with ferromagnetic nanoparticles, which are easily recovered by a magnetic field. In this work, an endopolygalacturonase from Chondrostereum purpureum (EndoPGCp) expressed in Pichia pastoris was immobilized on glutaraldehyde-activated chitosan ferromagnetic nanoparticles (EndoPGCp-MNP) and used to supplement a commercial enzyme cocktail. No significant differences in biochemical and kinetic properties were observed between EndoPGCp-MNP and EndoPGCp, although the EndoPGCp-MNP showed slightly increased thermostability. Cocktail supplementation with EndoPGCp-MNP increased reducing sugar release from orange wastes by 1.8-fold and showed a synergistic effect as compared to the free enzyme. Furthermore, EndoPGCp-MNP retained 65% of the initial activity after 7 cycles of re-use. These properties suggest that EndoPGCp-MNP may find applications in the processing of pectin-rich agroindustrial residues.


Assuntos
Poligalacturonase
3.
Biology (Basel) ; 10(12)2021 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-34943192

RESUMO

The climate changes expected for the next decades will expose plants to increasing occurrences of combined abiotic stresses, including drought, higher temperatures, and elevated CO2 atmospheric concentrations. These abiotic stresses have significant consequences on photosynthesis and other plants' physiological processes and can lead to tolerance mechanisms that impact metabolism dynamics and limit plant productivity. Furthermore, due to the high carbohydrate content on the cell wall, plants represent a an essential source of lignocellulosic biomass for biofuels production. Thus, it is necessary to estimate their potential as feedstock for renewable energy production in future climate conditions since the synthesis of cell wall components seems to be affected by abiotic stresses. This review provides a brief overview of plant responses and the tolerance mechanisms applied in climate change scenarios that could impact its use as lignocellulosic biomass for bioenergy purposes. Important steps of biofuel production, which might influence the effects of climate change, besides biomass pretreatments and enzymatic biochemical conversions, are also discussed. We believe that this study may improve our understanding of the plant biological adaptations to combined abiotic stress and assist in the decision-making for selecting key agronomic crops that can be efficiently adapted to climate changes and applied in bioenergy production.

4.
Food Chem ; 365: 130460, 2021 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-34237573

RESUMO

The ß-d-glucans are abundant cell wall polysaccharides in many cereals and contain both (1,3)- and (1,4)-bonds. The ß-1,3-1,4-glucanases (EC 3.2.1.73) hydrolyze ß-(1,4)-d-glucosidic linkages in glucans, and have applications in both animal and human food industries. A chimera between the family 11 carbohydrate-binding module from Ruminoclostridium (Clostridium)thermocellumcelH (RtCBM11), with the ß-1,3-1,4-glucanase from Bacillus subtilis (BglS) was constructed by end-to-end fusion (RtCBM11-BglS) to evaluate the effects on the catalytic function and its application in barley ß-glucan degradation for the brewing industry. The parental and chimeric BglS presented the same optimum pH (6.0) and temperature (50 °C) for maximum activity. The RtCBM11-BglS showed increased thermal stability and 30% higher hydrolytic efficiency against purified barley ß-glucan, and the rate of hydrolysis of ß-1,3-1,4-glucan in crude barley extracts was significantly increased. The enhanced catalytic performance of the RtCBM11-BglS may be useful for the treatment of crude barley extracts in the brewing industry.


Assuntos
Glucanos , Hordeum , Glicosídeo Hidrolases/metabolismo , Hordeum/genética , Hordeum/metabolismo , Hidrólise , Extratos Vegetais , Especificidade por Substrato
5.
Appl Biochem Biotechnol ; 191(3): 1111-1126, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31960367

RESUMO

The use of non-potable water (such as seawater) is an attractive alternative for water intensive processes such as biomass pretreatment and saccharification steps in the production of biochemicals and biofuels. Identification and application of halotolerant enzymes compatible with high-salt conditions may reduce the energy needed for non-potable water treatment and decrease waste treatment costs. Here we present the biochemical properties of a halotolerant endo-1,4-ß-xylanase produced by Aspergillus clavatus in submerged fermentation, using paper sludge (XPS) and sugarcane bagasse (XSCB), and its potential application in the hydrolysis of agroindustrial residues. The peptide mass fingerprint and amino acid sequencing of the XPS and XSCB enzymes showed primary structure similarities with an endo-1,4-ß-xylanase from Aspergillus clavatus (XYNA_ASPCL). Both enzyme preparations presented good thermal stability at 50 °C and were stable over a wide range of pH and Vmax up to 2450 U/mg for XPS. XPS and XSCB were almost fully stable even after 24 h of incubation in the presence of up to 3 M NaCl, and their activity were not affected by 500 mM NaCl. Both enzyme preparations were capable of hydrolyzing paper sludge and sugarcane bagasse to release reducing sugars. These characteristics make this xylanase attractive to be used in the hydrolysis of biomass, particularly with brackish water or seawater.


Assuntos
Aspergillus/enzimologia , Celulose/química , Endo-1,4-beta-Xilanases/metabolismo , Esgotos , Biomassa , Carboidratos/química , Celulase/metabolismo , Celulose/classificação , Concentração de Íons de Hidrogênio , Hidrólise , Microbiologia Industrial , Cinética , Papel , Peptídeos/química , Filogenia , Conformação Proteica , Saccharum , Temperatura , Poluentes Químicos da Água/análise , Poluição da Água , Purificação da Água/métodos
6.
Braz J Microbiol ; 51(2): 537-545, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31667801

RESUMO

A new strain of Trichoderma reesei (teleomorph Hypocrea jecorina) with high cellulase production was obtained by exposing the spores from T. reesei QM9414 to an ultraviolet light followed by selecting fast-growing colonies on plates containing CMC (1% w/v) as the carbon source. The mutant T. reesei RP698 reduced cultivation period to 5 days and increased tolerance to the end-products of enzymatic cellulose digestion. Under submerged fermentation conditions, FPase, CMCase, and Avicelase production increased up to 2-fold as compared to the original QM9414 strain. The highest levels of cellulase activity were obtained at 27 °C after 72 h with Avicel®, cellobiose, and sugarcane bagasse as carbon sources. The temperature and pH activity optima of the FPase, CMCase, and Avicelase were approximately 60 °C and 5.0, respectively. The cellulase activity was unaffected by the addition of 140 mM glucose in the enzyme assay. When T. reesei RP698 crude extract was supplemented by the addition of ß-glucosidase from Scytalidium thermophilum, a 2.3-fold increase in glucose release was observed, confirming the low inhibition by the end-product of cellulose hydrolysis. These features indicate the utility of this mutant strain in the production of enzymatic cocktails for biomass degradation.


Assuntos
Celulase/biossíntese , Fermentação , Hypocreales/enzimologia , Hypocreales/genética , Biomassa , Proteínas Fúngicas/biossíntese , Hidrólise , Hypocreales/efeitos da radiação , Mutação , Saccharum , Raios Ultravioleta
7.
Molecules ; 23(11)2018 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-30453683

RESUMO

This paper describes a bioprocess to obtain omegas-6 and 9 from the hydrolysis of Açaí (Euterpe oleracea Martius) and Buriti (Mauritia flexuosa) oils by lipases immobilized on octyl-sepharose. For this, oils and butters were initially selected as the carbon source which resulted in higher production of lipases in Beauveria bassiana and Fusarium oxysporum cultures. The carbon source that provided secretion of lipase by B. bassiana was Açaí oil, and for F. oxysporum, Bacuri butter. Lipases obtained under these conditions were immobilized on octyl-sepharose, and both, the derivatives and the crude extracts were biochemically characterized. It was observed that the immobilization promoted an increase of stability in B. bassiana and F. oxysporum lipase activities at the given temperatures and pH. In addition, the immobilization promoted hyperactivation of B. bassiana and F. oxysporum lipase activities being 23.5 and 11.0 higher than free enzyme, respectively. The hydrolysis of Açaí and Buriti oils by the derivatives was done in a biphasic (organic/aqueous) system, and the products were quantified in RP-HPLC. The results showed the potential of these immobilized lipases to obtain omegas-6 and 9 from Brazilian natural oils. This work may improve the enzymatic methodologies for obtaining foods and drugs enriched with fatty acids.


Assuntos
Arecaceae/química , Carotenoides/química , Euterpe/química , Lipase/química , Óleos de Plantas/química , Carbono/química , Cromatografia Líquida , Hidrólise , Interações Hidrofóbicas e Hidrofílicas , Espectrometria de Massas em Tandem
8.
Bioresour Technol ; 267: 704-713, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30093225

RESUMO

The ß-glucosidases (ß-D-glucoside glucohydrolase, EC 3.2.1.21) hydrolyze glycosidic bonds of alkyl-, amino-, or aryl-ß-D-glucosides, cyanogenic glucosides, disaccharides and short oligosaccharides and can also catalyze the synthesis of glycosyl-bonds between different molecules via transglycosylation. Due to their ubiquitous phylogenetic distribution, substrate diversity and ability to both hydrolyze and synthesize glycosidic bonds, the catalysis and regulation of ß-glucosidases have been extensively studied. Many ß-glucosidases are inhibited by the reaction product glucose, and reduced catalytic activity may limit the biotechnological and industrial applications of these enzymes and this has stimulated the search for ß-glucosidases that maintain their activity at high glucose concentrations. Studies of many glucose tolerant enzymes have been reported and due to the ongoing interest in these enzymes, here it has been reviewed this accumulated body of knowledge which provides valuable insights as to the kinetics, structure, regulation and evolution of glucose tolerant and glucose stimulated ß-glucosidases.


Assuntos
Glucose/metabolismo , beta-Glucosidase/metabolismo , Celulases , Glucosidases , Cinética , Filogenia , Especificidade por Substrato
9.
PLoS One ; 12(11): e0188254, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29145480

RESUMO

The activity of the GH1 ß-glucosidase from Humicola insolens (Bglhi) against p-nitrophenyl-ß-D-glucopyranoside (pNP-Glc) and cellobiose is enhanced 2-fold by glucose and/or xylose. Kinetic and transglycosylation data showed that hydrolysis is preferred in the absence of monosaccharides. Stimulation involves allosteric interactions, increased transglycosylation and competition of the substrate and monosaccharides for the -1 glycone and the +1/+2 aglycone binding sites. Protein directed evolution has been used to generate 6 mutants of Bglhi with altered stimulation patterns. All mutants contain one of three substitutions (N235S, D237V or H307Y) clustered around the +1/+2 aglycone binding sites. Two mutants with the H307Y substitution preferentially followed the transglycosylation route in the absence of xylose or glucose. The strong stimulation of their pNP-glucosidase and cellobiase activities was accompanied by increased transglycosylation and higher monosaccharide tolerance. The D237V mutation favoured hydrolysis over transglycosylation and the pNP-glucosidase activity, but not the cellobiase activity, was stimulated by xylose. The substitution N235S abolished the preference for hydrolysis or transglycosylation; the cellobiase, but not the pNP-glucosidase activity of the mutants was strongly inhibited by xylose. Both the D237V and N235S mutations lowered tolerance to the monosaccharides. These results provide evidence that the fine modulation of the activity of Bglhi and mutants by glucose and/or xylose is regulated by the relative affinities of the glycone and aglycone binding sites for the substrate and the free monosaccharides.


Assuntos
Glucose/metabolismo , Mycoplasma/enzimologia , Engenharia de Proteínas , Xilose/metabolismo , beta-Glucosidase/metabolismo , Celobiose/metabolismo , Glicosilação , Cinética , Mutagênese Sítio-Dirigida , Especificidade por Substrato , beta-Glucosidase/genética
10.
Folia Microbiol (Praha) ; 58(6): 561-8, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23564627

RESUMO

Two cellulases from Scytalidium thermophilum were purified and characterized, exhibiting tolerance to glucose and cellobiose. Characterization of purified cellulases I and II by mass spectrometry revealed primary structure similarities with an exoglucanase and an endoglucanase, respectively. Molecular masses were 51.2 and 45.6 kDa for cellulases I and II, respectively, as determined by sodium dodecyl sulfate polyacrylamide gel electrophoresis. Cellulases I and II exhibited isoelectric points of 6.2 and 6.9 and saccharide contents of 11 and 93 %, respectively. Optima of temperature and pH were 60-65 °C and 4.0 for purified cellulase I and 65 °C and 6.5 for purified cellulase II. Both cellulases maintained total CMCase activity after 60 min at 60 °C. Cysteine, Mn(2+), dithiotreitol and ß-mercaptoethanol-stimulated cellulases I and II. The tolerance to cellulose hydrolysis products and the high thermal stabilities of Scytalidium cellulases suggest good potential for industrial applications.


Assuntos
Ascomicetos/enzimologia , Celobiose/metabolismo , Celulases/isolamento & purificação , Celulases/metabolismo , Inibidores Enzimáticos/metabolismo , Glucose/metabolismo , Celulases/química , Eletroforese em Gel de Poliacrilamida , Ativadores de Enzimas/análise , Estabilidade Enzimática , Concentração de Íons de Hidrogênio , Ponto Isoelétrico , Espectrometria de Massas , Peso Molecular , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA