Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Polymers (Basel) ; 14(10)2022 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-35631864

RESUMO

Biological, physicochemical, structural, and thermal properties of PVA-based electrospun wound dressings added with hydrolyzed collagen (HC) and different concentrations of Hypericum perforatum ethanolic extract (EEHP) were studied. Membrane characterization was carried out by X-ray diffraction, Fourier infrared spectroscopy, differential scanning calorimetry, barrier properties, scanning electron microscopy, image analysis (diameter and pore size), as well as antimicrobial and anti-inflammatory activities. Results showed that the PVA/HC/EEHP materials, fabricated under controlled conditions of temperature and humidity, generated fiber membranes with diameters between 140−390 nm, adequate porosity and pore size for cell growth (67−90% and 4−16 µm, respectively), and good barrier properties (0.005−0.032 g·m−2 s−1) to be used in the treatment of conditions on the skin, and was even better than some commercial products. Finally, they showed to have anti-inflammatory (>80%), and antimicrobial activity against S. aureus and S. epiderm. Furthermore, higher crystalline structure was observed according to the EEHP concentration. In addition, this is the first report in which PVA/HC/EEHP membranes are successfully fabricated and characterized.

2.
Food Sci Nutr ; 10(4): 1146-1158, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35432974

RESUMO

Jicama root applications have focused on their nutraceutical properties without clearly specifying which compounds are related to this effect. Thus, the aim of the present study was to identify the changes in polysaccharides of nutraceutical interest in two commercial jicama roots (YS - Yellow Seed; PS - Purple Seed) during four stages of maturation, focusing on starch, fructooligosaccharides, and pectin (via galacturonic acid), and on their glycemic index, with the goal of determining, if possible, the best cost-effectiveness between jicama growing stages and nutraceutical effect. Both materials (YS, PS) presented similar growth rates (0.069 and 0.072 cm/day) and final sizes (12.7 ± 1.25, 12.3 ± 1.63 cm). Changes in size were accompanied by changes in protein, fiber, ashes, lipids, and carbohydrates, after 106 or 127 days of growing. It was also found that fructose content was higher than glucose during the maturing stages, possibly because of the hydrolysis of fructooligosaccharides or sucrose for starch production. Concerning inulin, its levels decreased (<6.0%), after the first days (YS: 13.4% ± 0.7%; PS: 8.4% ± 0.2%, 106 days); however, during development, the presence of other fructooligosaccharides was observed (nystose-YS 106 days 15.8% ± 0.9% and PS-106 days 18.5% ± 0.1%), while galacturonic acid and native starch levels increased, which must be related to the jicama's low glycemic index found (<25%), and their nutraceutical properties. This work proves the presence of inulin in jicama roots by analytical methods, its dependence on root development and classifies jicama as a low glycemic index food, supporting its nutraceutical character.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA