Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Molecules ; 26(13)2021 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-34209163

RESUMO

The feasibility of obtaining resistant starch type III (RS3) from malanga flour (Xanthosoma sagittifolium), as an unconventional source of starch, was evaluated using the hydrothermal treatment of autoclaving. The physicochemical characterization of RS3 made from malanga flour was carried out through the evaluation of the chemical composition, color attributes, and thermal properties. In addition, the contents of the total starch, available starch, resistant starch, and retrograded resistant starch were determined by in vitro enzymatic tests. A commercial corn starch sample was used to produce RS3 and utilized to compare all of the analyses. The results showed that native malanga flour behaved differently in most of the evaluations performed, compared to the commercial corn starch. These results could be explained by the presence of minor components that could interfere with the physicochemical and functional properties of the flour; however, the RS3 samples obtained from malanga flour and corn starch were similar in their thermal and morphological features, which may be related to their similarities in the content and molecular weight of amylose, in both of the samples. Furthermore, the yields for obtaining the autoclaved powders from corn starch and malanga flour were similar (≈89%), which showed that the malanga flour is an attractive raw material for obtaining RS3 with adequate yields, to be considered in the subsequent research.


Assuntos
Farinha , Amido Resistente , Xanthosoma/química , Zea mays/química
2.
Molecules ; 26(6)2021 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-33810043

RESUMO

High molecular weight chitosan (≈322 kDa) was obtained from chitin isolated from Brachystola magna (Girard) to produced biodegradable films. Their physicochemical, mechanical and water vapor permeability (WVP) properties were compared against commercial chitosan films with different molecular weights. Brachystola magna chitosan films (CFBM) exhibited similar physicochemical and mechanical characteristics to those of commercial chitosans. The CFBM films presented lower WVP values (10.01 × 10-11 g/m s Pa) than commercial chitosans films (from 16.06 × 10-11 to 64.30 × 10-11 g/m s Pa). Frankfurt-type sausages were covered with chitosan films and stored in refrigerated conditions (4 °C). Their quality attributes (color, weight loss, pH, moisture, texture and lipid oxidation) were evaluated at 0, 5, 10, 15 and 20 days. Sausages covered with CFMB films presented the lowest weight loss (from 1.24% to 2.38%). A higher increase in hardness (from 22.32 N to 30.63 N) was observed in sausages covered with CFMB films. Compared with other films and the control (uncovered sausages), CFMB films delay pH reduction. Moreover, this film presents the lower lipid oxidation level (0.10 malonaldehyde mg/sample kg). Thus, chitosan of B. magna could be a good alternative as packaging material for meat products with high-fat content.


Assuntos
Quitosana/química , Embalagem de Alimentos , Conservação de Alimentos , Gafanhotos/química , Produtos da Carne , Membranas Artificiais , Animais
3.
Int J Biol Macromol ; 160: 953-963, 2020 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-32497671

RESUMO

Insects are considered as alternative sources of chitosan; however, studies about the functional film-forming properties of insect chitosan are scarce. Insect chitosan films were made from Tenebrio molitor and Brachystola magna and were compared with commercial chitosan of different molecular weights (Mw). Mechanical properties (tensile strength, TS; elastic modulus, EM; elongation at break, %E), water vapor permeability (WVP) and physicochemical properties were characterized. The film properties of both commercial and insect chitosan were affected by Mw. Commercial chitosan films showed that at lower Mw, the TS (from 59 to 48 MPa) and EM (from 1471 to 1286 MPa) decreased; whereas WVP (from 2.9 × 10-11 to 3.4 × 10-11 g m-1s-1Pa-1), % E (from 38 to 41%) and solubility (from 30 to 33%) increased. Chitosan insect films showed lower TS and EM, and higher WPV, %E and solubility than commercial films. SEM revealed that chitosan insect films had lower porosity than commercial films. FTIR and X-ray diffraction showed not difference between insect and commercial chitosan films. These results showed that T. molitor and B. magna chitosan films could be used as a packaging material in several food products.


Assuntos
Quitosana/química , Membranas Artificiais , Tenebrio/química , Animais , Fenômenos Químicos , Fenômenos Mecânicos , Peso Molecular , Reologia , Solubilidade , Análise Espectral , Vapor
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...