Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-32305909

RESUMO

Catheter ablation is a common treatment for arrhythmia, but can fail if lesion lines are noncontiguous. Identification of gaps and nontransmural lesions can reduce the likelihood of treatment failure and recurrent arrhythmia. Intracardiac myocardial elastography (IME) is a strain imaging technique that provides visualization of the lesion line. Estimation of lesion size and gap resolution were evaluated in an open-chest canine model ( n = 3 ), and clinical feasibility was investigated in patients undergoing ablation to treat typical cavotricuspid isthmus (CTI) atrial flutter ( n = 5 ). A lesion line consisting of three lesions and two gaps was generated on the canine left ventricle via epicardial ablation. One lesion was generated in one canine right ventricle. Average lesion and gap areas were measured with high agreement (33 ± 14 and 30 ± 15 mm2, respectively) when compared against gross pathology (34 ± 19 and 26 ± 11 mm2, respectively). Gaps as small as 11 mm2 (3.6 mm on epicardial surface) were identifiable. Absolute error and relative error in estimated lesion area were 9.3 ± 8.4 mm2 and 31% ± 34%; error in estimated gap area was 11 ± 9.0 mm2 and 40% ± 29%. Flutter patients were imaged throughout the procedure. Strain was shown to be capable of differentiating between baseline and after ablation completion as confirmed by conduction block. In all patients, strain decreased in the CTI after ablation (mean paired difference of -17% ± 11%, ). IME could potentially become a useful ablation monitoring tool in health facilities.


Assuntos
Ablação por Cateter/métodos , Ecocardiografia/métodos , Técnicas de Imagem por Elasticidade/métodos , Animais , Flutter Atrial/diagnóstico por imagem , Flutter Atrial/patologia , Flutter Atrial/cirurgia , Cães , Coração/diagnóstico por imagem , Humanos , Processamento de Imagem Assistida por Computador , Miocárdio/patologia , Processamento de Sinais Assistido por Computador
2.
NMR Biomed ; 32(10): e3962, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-30022550

RESUMO

The goal of the study was to establish early hyperpolarized (HP) 13 C MRI metabolic and perfusion changes that predict effective high-intensity focused ultrasound (HIFU) ablation and lead to improved adjuvant treatment of partially treated regions. To accomplish this a combined HP dual-agent (13 C pyruvate and 13 C urea) 13 C MRI/multiparametric 1 H MRI approach was used to measure prostate cancer metabolism and perfusion 3-4 h, 1 d, and 5 d after exposure to ablative and sub-lethal doses of HIFU within adenocarcinoma of mouse prostate tumors using a focused ultrasound applicator designed for murine studies. Pathologic and immunohistochemical analysis of the ablated tumor demonstrated fragmented, non-viable cells and vasculature consistent with coagulative necrosis, and a mixture of destroyed tissue and highly proliferative, poorly differentiated tumor cells in tumor tissues exposed to sub-lethal heat doses in the ablative margin. In ablated regions, the intensity of HP 13 C lactate or HP 13 C urea and dynamic contrast-enhanced (DCE) MRI area under the curve images were reduced to the level of background noise by 3-4 h after treatment with no recovery by the 5 d time point in either case. In the tissues that received sub-lethal heat dose, there was a significant 60% ± 12.4% drop in HP 13 C lactate production and a significant 30 ± 13.7% drop in urea perfusion 3-4 h after treatment, followed by recovery to baseline by 5 d after treatment. DCE MRI Ktrans showed a similar trend to HP 13 C urea, demonstrating a complete loss of perfusion with no recovery in the ablated region, while having a 40%-50% decrease 3-4 h after treatment followed by recovery to baseline values by 5 d in the margin region. The utility of the HP 13 C MR measures of perfusion and metabolism in optimizing focal HIFU, either alone or in combination with adjuvant therapy, deserves further testing in future studies.


Assuntos
Isótopos de Carbono/química , Ablação por Ultrassom Focalizado de Alta Intensidade , Perfusão , Neoplasias da Próstata/diagnóstico por imagem , Neoplasias da Próstata/metabolismo , Acústica , Animais , Meios de Contraste/química , Antígeno Ki-67/metabolismo , Lactatos/metabolismo , Imageamento por Ressonância Magnética , Masculino , Camundongos Endogâmicos C57BL , Neoplasias da Próstata/patologia , Ácido Pirúvico/metabolismo
3.
Am J Transl Res ; 10(10): 3162-3170, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30416658

RESUMO

Clinical management of many chronic ophthalmological disorders requires direct delivery of drugs into the vitreous. There is an important need to investigate novel needle-less alternatives to deliver drugs to the vitreous. The purpose of this study is to assess the effects of a needle-less system using ultrasound to enhance vitreal delivery of small molecules through the sclera in an ex vivo model and to evaluate whether changes in permeability are mainly due to the heat generated by sonication. An eye cup containing 1 mL of sodium fluorescein 0.1% was placed on top of the sclera of cadaveric rabbit eyes. Treated eyes were sonicated for 10 minutes, and left in contact with the fluorescein solution for an additional 50 minutes. Control eyes received the same exposure to fluorescein solution (60 minutes) in the eye cup without ultrasound treatment. Vitreous humor was collected and analyzed using a fluorescence spectrophotometer to calculate the concentration of fluorescein that diffused into the vitreous humor. An additional set of eyes was treated using a heating probe to evaluate whether changes in permeability were mainly due to heat. Vitreous samples from ultrasound-treated eyes showed a 44.6% higher concentration of fluorescein compared to control eyes. The concentration of fluorescein in the vitreous of heat-treated eyes did not show a significant difference when compared to control eyes. Thus, phonophoresis is a promising needle-less method for vitreal drug delivery, and local heating conducted to the surface of the sclera should be mitigated because it does not enhance the efficacy of the method.

4.
J Ther Ultrasound ; 6: 7, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30123506

RESUMO

BACKGROUND: Hyperthermia therapy (HT) has shown to be an effective adjuvant to radiation, chemotherapy, and immunotherapy. In order to be safe and effective, delivery of HT requires maintenance of target tissue temperature within a narrow range (40-44 °C) for 30-60 min, which necessitates conformal heat delivery and accurate temperature monitoring. The goal of this project was to develop an MR thermometry-guided hyperthermia delivery platform based upon the ExAblate prostate array that would achieve uniform stable heating over large volumes within the prostate, while allowing the user to precisely control the power deposition patterns and shape of the region of treatment (ROT). METHODS: The HT platform incorporates an accelerated multi-slice real time MR thermometry pulse sequence and reconstruction pipeline. Temperature uniformity over a large contiguous area was achieved by multi-point temperature sampling with multi-focal feedback power control. The hyperthermia delivery system was based on an InSightec ExAblate 2100 prostate focused ultrasound ablation system, and HeartVista's RTHawk real-time MRI system integrated with a 3 T MRI scanner. The integrated system was evaluated in experiments with a tissue-mimicking phantom for prolonged exposures with a target temperature increase of 7 °C from baseline. RESULTS: Five various shapes of the region of treatment, defined on a 5 × 5 grid (35 × 35 mm, 11-25 focal spots per shape), were implemented to evaluate the performance of the system. MR temperature images, acquired after steady state was reached, showed different patterns of heating that closely matched the prescribed regions. Temperature uncertainty of the thermometry acquisition was 0.5 °C. The time to reach the target temperature (2:58-7:44 min) depended on the chosen ROT shape and on the distance from transducer to focal plane. Pre-cooling with circulating water helped to reduce near-field heating. CONCLUSIONS: We have implemented a real-time MR thermometry-guided system for hyperthermia delivery within user-defined regions with the ExAblate prostate array and evaluated it in phantom experiments for different shapes and focal depths. Our results demonstrate the feasibility of using a commercially available endorectal FUS transducer to perform spatially-conformal hyperthermia therapy and could lead to a new set of exciting applications for these devices.

5.
Artigo em Inglês | MEDLINE | ID: mdl-29104343

RESUMO

Discogenic back pain presents a major public health issue, with current therapeutic interventions limited to short-term symptom relief without providing regenerative remedies for diseased intervertebral discs (IVD). Many of these interventions are invasive and can diminish the biomechanical integrity of the IVDs. Low intensity pulsed ultrasound (LIPUS) is a potential treatment option that is both non-invasive and regenerative. LIPUS has been shown to be a clinically effective method for the enhancement of wound and fracture healing. Recent in vitro studies have shown that LIPUS stimulation induces an upregulation functional matrix proteins and downregulation of inflammatory factors in cultured IVD cells. However, we do not know the effects of LIPUS on an in vivo model for intervertebral disc degeneration. The objective of this study was to show technical feasibility of building a LIPUS system that can target the rat tail IVD and apply this setup to a model for acute IVD degeneration. A LIPUS exposimetry system was built using a 1.0 MHz planar transducer and custom housing. Ex vivo intensity measurements demonstrated LIPUS delivery to the center of the rat tail IVD. Using an established stab-incision model for disc degeneration, LIPUS was applied for 20 minutes daily for five days. For rats that displayed a significant injury response, LIPUS treatment caused significant upregulation of Collagen II and downregulation of Tumor Necrosis Factor - α gene expression. Our preliminary studies indicate technical feasibility of targeted delivery of ultrasound to a rat tail IVD for studies of LIPUS biological effects.

6.
Med Phys ; 44(10): 5339-5356, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28681404

RESUMO

PURPOSE: Catheter-based ultrasound applicators can generate thermal ablation of tissues adjacent to body lumens, but have limited focusing and penetration capabilities due to the small profile of integrated transducers required for the applicator to traverse anatomical passages. This study investigates a design for an endoluminal or laparoscopic ultrasound applicator with deployable acoustic reflector and fluid lens components, which can be expanded after device delivery to increase the effective acoustic aperture and allow for deeper and dynamically adjustable target depths. Acoustic and biothermal theoretical studies, along with benchtop proof-of-concept measurements, were performed to investigate the proposed design. METHODS: The design schema consists of an array of tubular transducer(s) situated at the end of a catheter assembly, surrounded by an expandable water-filled conical balloon with a secondary reflective compartment that redirects acoustic energy distally through a plano-convex fluid lens. By controlling the lens fluid volume, the convex surface can be altered to adjust the focal length or collapsed for device insertion or removal. Acoustic output of the expanded applicator assembly was modeled using the rectangular radiator method and secondary sources, accounting for reflection and refraction at interfaces. Parametric studies of transducer radius (1-5 mm), height (3-25 mm), frequency (1.5-3 MHz), expanded balloon diameter (10-50 mm), lens focal length (10-100 mm), lens fluid (silicone oil, perfluorocarbon), and tissue attenuation (0-10 Np/m/MHz) on beam distributions and focal gain were performed. A proof-of-concept applicator assembly was fabricated and characterized using hydrophone-based intensity profile measurements. Biothermal simulations of endoluminal ablation in liver and pancreatic tissue were performed for target depths between 2 and 10 cm. RESULTS: Simulations indicate that focal gain and penetration depth scale with the expanded reflector-lens balloon diameter, with greater achievable performance using perfluorocarbon lens fluid. Simulations of a 50 mm balloon OD, 10 mm transducer outer diameter (OD), 1.5 MHz assembly in water resulted in maximum intensity gain of ~170 (focal dimensions: ~12 mm length × 1.4 mm width) at ~5 cm focal depth and focal gains above 100 between 24 and 84 mm depths. A smaller (10 mm balloon OD, 4 mm transducer OD, 1.5 MHz) configuration produced a maximum gain of 6 at 9 mm depth. Compared to a conventional applicator with a fixed spherically focused transducer of 12 mm diameter, focal gain was enhanced at depths beyond 20 mm for assembly configurations with balloon diameters ≥ 20 mm. Hydrophone characterizations of the experimental assembly (31 mm reflector/lens diameter, 4.75 mm transducer radius, 1.7 MHz) illustrated focusing at variable depths between 10-70 mm with a maximum gain of ~60 and demonstrated agreement with theoretical simulations. Biothermal simulations (30 s sonication, 75 °C maximum) indicate that investigated applicator assembly configurations, at 30 mm and 50 mm balloon diameters, could create localized ellipsoidal thermal lesions increasing in size from 10 to 55 mm length × 3-6 mm width in liver tissue as target depth increased from 2 to 10 cm. CONCLUSIONS: Preliminary theoretical and experimental analysis demonstrates that combining endoluminal ultrasound with an expandable acoustic reflector and fluid lens assembly can significantly enhance acoustic focal gain and penetration from inherently smaller diameter catheter-based applicators.


Assuntos
Lentes , Transdutores , Terapia por Ultrassom/instrumentação , Temperatura
7.
J Ther Ultrasound ; 5: 10, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28469915

RESUMO

BACKGROUND: The goal of this study was to theoretically investigate the feasibility of intraductal and transgastric approaches to ultrasound-based thermal therapy of pancreatic tumors, and to evaluate possible treatment strategies. METHODS: This study considered ultrasound applicators with 1.2 mm outer diameter tubular transducers, which are inserted into the tissue to be treated by an endoscopic approach, either via insertion through the gastric wall (transgastric) or within the pancreatic duct lumen (intraductal). 8 patient-specific, 3D, transient, biothermal and acoustic finite element models were generated to model hyperthermia (n = 2) and ablation (n = 6), using sectored (210°-270°, n = 4) and 360° (n = 4) transducers for treatment of 3.3-17.0 cm3 tumors in the head (n = 5), body (n = 2), and tail (n = 1) of the pancreas. A parametric study was performed to determine appropriate treatment parameters as a function of tissue attenuation, blood perfusion rates, and distance to sensitive anatomy. RESULTS: Parametric studies indicated that pancreatic tumors up to 2.5 or 2.7 cm diameter can be ablated within 10 min with the transgastric and intraductal approaches, respectively. Patient-specific simulations demonstrated that 67.1-83.3% of the volumes of four sample 3.3-11.4 cm3 tumors could be ablated within 3-10 min using transgastric or intraductal approaches. 55.3-60.0% of the volume of a large 17.0 cm3 tumor could be ablated using multiple applicator positions within 20-30 min with either transgastric or intraductal approaches. 89.9-94.7% of the volume of two 4.4-11.4 cm3 tumors could be treated with intraductal hyperthermia. Sectored applicators are effective in directing acoustic output away from and preserving sensitive structures. When acoustic energy is directed towards sensitive structures, applicators should be placed at least 13.9-14.8 mm from major vessels like the aorta, 9.4-12.0 mm from other vessels, depending on the vessel size and flow rate, and 14 mm from the duodenum. CONCLUSIONS: This study demonstrated the feasibility of generating shaped or conformal ablative or hyperthermic temperature distributions within pancreatic tumors using transgastric or intraductal ultrasound.

8.
Med Phys ; 43(7): 4184, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27370138

RESUMO

PURPOSE: Endoluminal ultrasound may serve as a minimally invasive option for delivering thermal ablation to pancreatic tumors adjacent to the stomach or duodenum. The objective of this study was to explore the basic feasibility of this treatment strategy through the design, characterization, and evaluation of proof-of-concept endoluminal ultrasound applicators capable of placement in the gastrointestinal (GI) lumen for volumetric pancreas ablation under MR guidance. METHODS: Two variants of the endoluminal applicator, each containing a distinct array of two independently powered transducers (10 × 10 mm 3.2 MHz planar; or 8 × 10 × 20 mm radius of curvature 3.3 MHz curvilinear geometries) at the distal end of a meter long flexible catheter assembly, were designed and fabricated. Transducers and circulatory water flow for acoustic coupling and luminal cooling were contained by a low-profile polyester balloon covering the transducer assembly fixture. Each applicator incorporated miniature spiral MR coils and mechanical features (guiding tips and hinges) to facilitate tracking and insertion through the GI tract under MRI guidance. Acoustic characterization of each device was performed using radiation force balance and hydrophone measurements. Device delivery into the upper GI tract, adjacent to the pancreas, and heating characteristics for treatment of pancreatic tissue were evaluated in MR-guided ex vivo and in vivo porcine experiments. MR guidance was utilized for anatomical target identification, tracking/positioning of the applicator, and MR temperature imaging (MRTI) for PRF-based multislice thermometry, implemented in the real-time RTHawk software environment. RESULTS: Force balance and hydrophone measurements indicated efficiencies of 48.8% and 47.8% and -3 dB intensity beam-widths of 3.2 and 1.2 mm for the planar and curvilinear transducers, respectively. Ex vivo studies on whole-porcine carcasses revealed capabilities of producing ablative temperature rise (ΔT > 15 °C) contours in pancreatic tissue 4-40 mm long and 4-28 mm wide for the planar transducer applicator (1-13 min sonication duration, ∼4 W/cm(2) applied acoustic intensity). Curvilinear transducers produced more selective heating, with a narrower ΔT > 15 °C contour length and width of up to 1-24 mm and 2-7 mm, respectively (1-7 min sonication duration, ∼4 W/cm(2) applied acoustic intensity). Active tracking of the miniature spiral coils was achieved using a Hadamard encoding tracking sequence, enabling real-time determination of each coil's coordinates and automated prescription of imaging planes for thermometry. In vivo MRTI-guided heating trials in three pigs demonstrated capability of ∼20 °C temperature elevation in pancreatic tissue at 2 cm depths from the applicator, with 5-7 W/cm(2) applied intensity and 6-16 min sonication duration. Dimensions of thermal lesions in the pancreas ranged from 12 to 28 mm, 3 to 10 mm, and 5 to 10 mm in length, width, and depth, respectively, as verified through histological analysis of tissue sections. Multiple-baseline reconstruction and respiratory-gated acquisition were demonstrated to be effective strategies in suppressing motion artifacts for clear evolution of temperature profiles during MRTI in the in vivo studies. CONCLUSIONS: This study demonstrates the technical feasibility of generating volumetric ablation in pancreatic tissue using endoluminal ultrasound applicators positioned in the stomach lumen. MR guidance facilitates target identification, device tracking/positioning, and treatment monitoring through real-time multislice PRF-based thermometry.


Assuntos
Ablação por Ultrassom Focalizado de Alta Intensidade/instrumentação , Neoplasias Pancreáticas/cirurgia , Animais , Catéteres , Desenho de Equipamento , Estudos de Viabilidade , Feminino , Trato Gastrointestinal/diagnóstico por imagem , Ablação por Ultrassom Focalizado de Alta Intensidade/métodos , Imagem por Ressonância Magnética Intervencionista/métodos , Neoplasias Pancreáticas/diagnóstico por imagem , Impressão Tridimensional , Software , Sus scrofa , Termografia/métodos
9.
Int J Hyperthermia ; 32(2): 97-111, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27097663

RESUMO

PURPOSE: The aim of this study is to investigate endoluminal ultrasound applicator configurations for volumetric thermal ablation and hyperthermia of pancreatic tumours using 3D acoustic and biothermal finite element models. MATERIALS AND METHODS: Parametric studies compared endoluminal heating performance for varying applicator transducer configurations (planar, curvilinear-focused, or radial-diverging), frequencies (1-5 MHz), and anatomical conditions. Patient-specific pancreatic head and body tumour models were used to evaluate feasibility of generating hyperthermia and thermal ablation using an applicator positioned in the duodenal or stomach lumen. Temperature and thermal dose were calculated to define ablation (> 240 EM(43 °C)) and moderate hyperthermia (40-45 °C) boundaries, and to assess sparing of sensitive tissues. Proportional-integral control was incorporated to regulate maximum temperature to 70-80 °C for ablation and 45 °C for hyperthermia in target regions. RESULTS: Parametric studies indicated that 1-3 MHz planar transducers are the most suitable for volumetric ablation, producing 5-8 cm(3) lesion volumes for a stationary 5-min sonication. Curvilinear-focused geometries produce more localised ablation to 20-45 mm depth from the GI tract and enhance thermal sparing (T(max) < 42 °C) of the luminal wall. Patient anatomy simulations show feasibility in ablating 60.1-92.9% of head/body tumour volumes (4.3-37.2 cm(3)) with dose < 15 EM(43 °C) in the luminal wall for 18-48 min treatment durations, using 1-3 applicator placements in GI lumen. For hyperthermia, planar and radial-diverging transducers could maintain up to 8 cm(3) and 15 cm(3) of tissue, respectively, between 40-45 °C for a single applicator placement. CONCLUSIONS: Modelling studies indicate the feasibility of endoluminal ultrasound for volumetric thermal ablation or hyperthermia treatment of pancreatic tumour tissue.


Assuntos
Modelos Teóricos , Neoplasias Pancreáticas/terapia , Modelagem Computacional Específica para o Paciente , Terapia por Ultrassom , Humanos , Transdutores
10.
Proc SPIE Int Soc Opt Eng ; 93262015 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-26677314

RESUMO

An ultrasound applicator for endoluminal thermal therapy of pancreatic tumors has been introduced and evaluated through acoustic/biothermal simulations and ex vivo experimental investigations. Endoluminal therapeutic ultrasound constitutes a minimally invinvasive conformal therapy and is compatible with ultrasound or MR-based image guidance. The applicator would be placed in the stomach or duodenal lumen, and sonication would be performed through the luminal wall into the tumor, with concurrent water cooling of the wall tissue to prevent its thermal injury. A finite-element (FEM) 3D acoustic and biothermal model was implemented for theoretical analysis of the approach. Parametric studies over transducer geometries and frequencies revealed that operating frequencies within 1-3 MHz maximize penetration depth and lesion volume while sparing damage to the luminal wall. Patient-specific FEM models of pancreatic head tumors were generated and used to assess the feasibility of performing endoluminal ultrasound thermal ablation and hyperthermia of pancreatic tumors. Results indicated over 80% of the volume of small tumors (~2 cm diameter) within 35 mm of the duodenum could be safely ablated in under 30 minutes or elevated to hyperthermic temperatures at steady-state. Approximately 60% of a large tumor (~5 cm diameter) model could be safely ablated by considering multiple positions of the applicator along the length of the duodenum to increase coverage. Prototype applicators containing two 3.2 MHz planar transducers were fabricated and evaluated in ex vivo porcine carcass heating experiments under MR temperature imaging (MRTI) guidance. The applicator was positioned in the stomach adjacent to the pancreas, and sonications were performed for 10 min at 5 W/cm2 applied intensity. MRTI indicated over 40°C temperature rise in pancreatic tissue with heating penetration extending 3 cm from the luminal wall.

11.
Circ Arrhythm Electrophysiol ; 8(6): 1491-7, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26546345

RESUMO

BACKGROUND: Epicardial radiofrequency catheter ablation of ventricular tachycardia remains challenging because of the presence of deep myocardial scar and adjacent cardiac structures, such as the coronary arteries, phrenic nerve, and epicardial fat that limit delivery of radiofrequency energy. High-intensity ultrasound (HIU) is an acoustic energy source able to deliver deep lesions through fat, while sparing superficial structures. We developed and tested an epicardial HIU ablation catheter in a closed chest, in vivo swine model. METHODS AND RESULTS: The HIU catheter is an internally cooled, 14-French, side-facing catheter, integrated with A-mode ultrasound guidance. Swine underwent percutaneous subxyphoid epicardial access and ablation with HIU (n=10 swine) at 15, 20, and 30 W. Compared with irrigated radiofrequency lesions in control swine (n = 5), HIU demonstrated increased lesion depth (HIU 11.6±3.2 mm versus radiofrequency 4.7±1.6 mm; mean±SD) and epicardial sparing (HIU 2.9±2.1 mm versus radiofrequency 0.1±0.2 mm) at all HIU powers, and increased lesion volume at HIU 20 and 30 W (P<0.0001 for all comparisons). HIU ablation over coronary arteries and surrounding epicardial fat resulted in deep lesions with normal angiographic flow. Histological disruption of coronary adventitia, but not media or intima, was noted in 44% of lesions. CONCLUSIONS: Compared with radiofrequency, HIU ablation in vivo demonstrates significantly deeper and larger lesions with greater epicardial sparing in a dose-dependent manner. Further development of this catheter may lead to a promising alternative to epicardial radiofrequency ablation.


Assuntos
Ablação por Cateter/métodos , Ablação por Ultrassom Focalizado de Alta Intensidade/métodos , Pericárdio/cirurgia , Animais , Cateteres Cardíacos , Ablação por Cateter/efeitos adversos , Ablação por Cateter/instrumentação , Desenho de Equipamento , Feminino , Ablação por Ultrassom Focalizado de Alta Intensidade/efeitos adversos , Ablação por Ultrassom Focalizado de Alta Intensidade/instrumentação , Modelos Animais , Pericárdio/patologia , Radiografia Intervencionista , Suínos , Irrigação Terapêutica
12.
Med Phys ; 42(9): 5130-7, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26328964

RESUMO

PURPOSE: Evaluate whether a decrease in apparent diffusion coefficient (ADC), associated with loss of tissue viability (LOTV), can be observed during the course of thermal ablation of the prostate. METHODS: Thermal ablation was performed in a healthy in vivo canine prostate model (N = 2, ages: 5 yr healthy, mixed breed, weights: 13-14 kg) using a transurethral high-intensity ultrasound catheter and was monitored using a strategy that interleaves diffusion weighted images and gradient-echo images. The two sequences were used to measure ADC and changes in temperature during the treatment. Changes in temperature were used to compute expected changes in ADC. The difference between expected and measured ADC, ADCDIFF, was analyzed in regions ranging from moderate hyperthermia to heat fixation. A receiver operator characteristic (ROC) curve analysis was used to select a threshold of detection of LOTV. Time of threshold activation, tLOTV, was compared with time to reach CEM43 = 240, tDOSE. RESULTS: The observed relationship between temperature and ADC in vivo (2.2%/ °C, 1.94%-2.47%/ °C 95% confidence interval) was not significantly different than the previously reported value of 2.4%/ °C in phantom. ADCDIFF changes after correction for temperature showed a mean decrease of 25% in ADC 60 min post-treatment in regions where sufficient thermal dose (CEM43 > 240) was achieved. Following our ROC analysis, a threshold of 2.25% decrease in ADCDIFF for three consecutive time points was chosen as an indicator of LOTV. The ADCDIFF was found to decrease quickly (1-2 min) after reaching CEM43 = 240 in regions associated with heat fixation and more slowly (10-20 min) in regions that received slower heating. CONCLUSIONS: Simultaneous monitoring of ADC and temperature during treatment might allow for a more complete tissue viability assessment of ablative thermal treatments in the prostate. ADCDIFF decreases during the course of treatment may be interpreted as loss of tissue viability.


Assuntos
Técnicas de Ablação/métodos , Hipertermia Induzida/métodos , Animais , Difusão , Cães , Estudos de Viabilidade , Masculino , Próstata/citologia , Sobrevivência de Tecidos , Resultado do Tratamento
13.
Magn Reson Med ; 74(6): 1548-55, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26390357

RESUMO

PURPOSE: To demonstrate the feasibility of using ultrashort echo-time MRI to quantify T1 changes in cortical bone due to heating. METHODS: Variable flip-angle T1 mapping combined with 3D ultrashort echo-time imaging was used to measure T1 in cortical bone. A calibration experiment was performed to detect T1 changes with temperature in ex vivo cortical bone samples from a bovine femur. Ultrasound heating experiments were performed using an interstitial applicator in ex vivo bovine femur specimens, and heat-induced T1 changes were quantified. RESULTS: The calibration experiment demonstrated that T1 increases with temperature in cortical bone. We observed a linear relationship between temperature and T1 with a linear coefficient between 0.67 and 0.84 ms/°C over a range of 25-70°C. The ultrasound heating experiments showed increased T1 changes in the heated regions, and the relationship between the temperature changes and T1 changes was similar to that of the calibration. CONCLUSION: We demonstrated a temperature dependence of T1 in ex vivo cortical bone using a variable flip-angle ultrashort echo-time T1 mapping method.


Assuntos
Temperatura Corporal/fisiologia , Fêmur/fisiologia , Interpretação de Imagem Assistida por Computador/métodos , Imageamento Tridimensional/métodos , Imageamento por Ressonância Magnética/métodos , Termografia/métodos , Animais , Temperatura Corporal/efeitos da radiação , Bovinos , Estudos de Viabilidade , Fêmur/efeitos da radiação , Calefação/métodos , Ondas de Choque de Alta Energia , Técnicas In Vitro , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
14.
Ultrasound Med Biol ; 41(9): 2420-34, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26051309

RESUMO

Passive cavitation imaging provides spatially resolved monitoring of cavitation emissions. However, the diffraction limit of a linear imaging array results in relatively poor range resolution. Poor range resolution has limited prior analyses of the spatial specificity and sensitivity of passive cavitation imaging in predicting thermal lesion formation. In this study, this limitation is overcome by orienting a linear array orthogonal to the high-intensity focused ultrasound propagation direction and performing passive imaging. Fourteen lesions were formed in ex vivo bovine liver samples as a result of 1.1-MHz continuous-wave ultrasound exposure. The lesions were classified as focal, "tadpole" or pre-focal based on their shape and location. Passive cavitation images were beamformed from emissions at the fundamental, harmonic, ultraharmonic and inharmonic frequencies with an established algorithm. Using the area under a receiver operating characteristic curve (AUROC), fundamental, harmonic and ultraharmonic emissions were found to be significant predictors of lesion formation for all lesion types. For both harmonic and ultraharmonic emissions, pre-focal lesions were classified most successfully (AUROC values of 0.87 and 0.88, respectively), followed by tadpole lesions (AUROC values of 0.77 and 0.64, respectively) and focal lesions (AUROC values of 0.65 and 0.60, respectively).


Assuntos
Ablação por Ultrassom Focalizado de Alta Intensidade/métodos , Interpretação de Imagem Assistida por Computador/métodos , Fígado/diagnóstico por imagem , Fígado/cirurgia , Cirurgia Assistida por Computador/métodos , Ultrassonografia/métodos , Algoritmos , Animais , Bovinos , Hepatectomia/métodos , Aumento da Imagem/métodos , Técnicas In Vitro , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
15.
Int J Hyperthermia ; 31(2): 203-15, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25799287

RESUMO

Catheter-based ultrasound (CBUS) is applied to deliver minimally invasive thermal therapy to solid cancer tumours, benign tissue growth, vascular disease, and tissue remodelling. Compared to other energy modalities used in catheter-based surgical interventions, unique features of ultrasound result in conformable and precise energy delivery with high selectivity, fast treatment times, and larger treatment volumes. We present a concise review of CBUS technology being currently utilized in animal and clinical studies or being developed for future applications. CBUS devices have been categorised into interstitial, endoluminal and endovascular/cardiac applications. Basic applicator designs, site-specific evaluations and possible treatment applications have been discussed in brief. Particular emphasis has been given to ablation studies that incorporate image guidance for applicator placement, therapy monitoring, feedback control, and post-procedure assessment. Examples of devices included here span the entire spectrum of the development cycle from preliminary simulation-based design studies to implementation in clinical investigations. The use of CBUS under image guidance has the potential for significantly improving precision and applicability of thermal therapy delivery.


Assuntos
Ablação por Cateter/instrumentação , Hipertermia Induzida/instrumentação , Terapia por Ultrassom/instrumentação , Humanos
16.
Int J Hyperthermia ; 30(4): 228-44, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25017322

RESUMO

PURPOSE: Theoretical parametric and patient-specific models are applied to assess the feasibility of interstitial ultrasound ablation of tumours in and near the spine and to identify potential treatment delivery strategies. METHODS: 3D patient-specific finite element models (n = 11) of interstitial ultrasound ablation of tumours associated with the spine were generated. Gaseous nerve insulation and various applicator configurations, frequencies (3 and 7 MHz), placement trajectories, and tumour locations were simulated. Parametric studies with multilayered models investigated the impacts of tumour attenuation, tumour dimension, and the thickness of bone insulating critical structures. Temperature and thermal dose were calculated to define ablation (>240 equivalent minutes at 43 °C (EM43 °C)) and safety margins (<45 °C and <6 EM43 °C), and to determine performance and required delivery parameters. RESULTS: Osteolytic tumours (≤44 mm) encapsulated by bone could be successfully ablated with 7 MHz interstitial ultrasound (8.1-16.6 W/cm(2), 120-5900 J, 0.4-15 min). Ablation of tumours (94.6-100% volumetric) 0-14.5 mm from the spinal canal was achieved within 3-15 min without damaging critical nerves. 3 MHz devices provided faster ablation (390 versus 930 s) of an 18 mm diameter osteoblastic (high bone content) volume than 7 MHz devices. Critical anatomy in proximity to the tumour could be protected by selection of appropriate applicator configurations, active sectors, and applied power schemas, and through gaseous insulation. Preferential ultrasound absorption at bone surfaces facilitated faster, more effective ablations in osteolytic tumours and provided isolation of ablative energies and temperatures. CONCLUSIONS: Parametric and patient-specific studies demonstrated the feasibility and potential advantages of interstitial ultrasound ablation treatment of paraspinal and osteolytic vertebral tumours.


Assuntos
Hipertermia Induzida/métodos , Neoplasias da Coluna Vertebral/terapia , Terapia por Ultrassom/métodos , Acústica , Análise de Elementos Finitos , Humanos , Modelos Teóricos
17.
Med Phys ; 41(3): 033301, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24593742

RESUMO

PURPOSE: Feasibility of targeted and volumetric hyperthermia (40-45 °C) delivery to the prostate with a commercial MR-guided endorectal ultrasound phased array system, designed specifically for thermal ablation and approved for ablation trials (ExAblate 2100, Insightec Ltd.), was assessed through computer simulations and tissue-equivalent phantom experiments with the intention of fast clinical translation for targeted hyperthermia in conjunction with radiotherapy and chemotherapy. METHODS: The simulations included a 3D finite element method based biothermal model, and acoustic field calculations for the ExAblate ERUS phased array (2.3 MHz, 2.3 × 4.0 cm(2), ∼1000 channels) using the rectangular radiator method. Array beamforming strategies were investigated to deliver protracted, continuous-wave hyperthermia to focal prostate cancer targets identified from representative patient cases. Constraints on power densities, sonication durations and switching speeds imposed by ExAblate hardware and software were incorporated in the models. Preliminary experiments included beamformed sonications in tissue mimicking phantoms under MR temperature monitoring at 3 T (GE Discovery MR750W). RESULTS: Acoustic intensities considered during simulation were limited to ensure mild hyperthermia (Tmax < 45 °C) and fail-safe operation of the ExAblate array (spatial and time averaged acoustic intensity ISATA < 3.4 W/cm(2)). Tissue volumes with therapeutic temperature levels (T > 41 °C) were estimated. Numerical simulations indicated that T > 41 °C was calculated in 13-23 cm(3) volumes for sonications with planar or diverging beam patterns at 0.9-1.2 W/cm(2), in 4.5-5.8 cm(3) volumes for simultaneous multipoint focus beam patterns at ∼0.7 W/cm(2), and in ∼6.0 cm(3) for curvilinear (cylindrical) beam patterns at 0.75 W/cm(2). Focused heating patterns may be practical for treating focal disease in a single posterior quadrant of the prostate and diffused heating patterns may be useful for heating quadrants, hemigland volumes or even bilateral targets. Treatable volumes may be limited by pubic bone heating. Therapeutic temperatures were estimated for a range of physiological parameters, sonication duty cycles and rectal cooling. Hyperthermia specific phasing patterns were implemented on the ExAblate prostate array and continuous-wave sonications (∼0.88 W/cm(2), 15 min) were performed in tissue-mimicking material with real-time MR-based temperature imaging (PRFS imaging at 3.0 T). Shapes of heating patterns observed during experiments were consistent with simulations. CONCLUSIONS: The ExAblate 2100, designed specifically for thermal ablation, can be controlled for delivering continuous hyperthermia in prostate while working within operational constraints.


Assuntos
Ablação por Ultrassom Focalizado de Alta Intensidade/métodos , Hipertermia Induzida/métodos , Espectroscopia de Ressonância Magnética/métodos , Neoplasias da Próstata/terapia , Acústica , Simulação por Computador , Desenho de Equipamento , Estudos de Viabilidade , Análise de Elementos Finitos , Ablação por Ultrassom Focalizado de Alta Intensidade/instrumentação , Humanos , Imageamento Tridimensional , Masculino , Modelos Teóricos , Imagens de Fantasmas , Próstata/efeitos dos fármacos , Próstata/efeitos da radiação , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/radioterapia , Temperatura , Ultrassom
18.
Int J Hyperthermia ; 29(7): 629-42, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24102393

RESUMO

PURPOSE: The objectives of this study were to develop numerical models of interstitial ultrasound ablation of tumours within or adjacent to bone, to evaluate model performance through theoretical analysis, and to validate the models and approximations used through comparison to experiments. METHODS: 3D transient biothermal and acoustic finite element models were developed, employing four approximations of 7-MHz ultrasound propagation at bone/soft tissue interfaces. The various approximations considered or excluded reflection, refraction, angle-dependence of transmission coefficients, shear mode conversion, and volumetric heat deposition. Simulations were performed for parametric and comparative studies. Experiments within ex vivo tissues and phantoms were performed to validate the models by comparison to simulations. Temperature measurements were conducted using needle thermocouples or magnetic resonance temperature imaging (MRTI). Finite element models representing heterogeneous tissue geometries were created based on segmented MR images. RESULTS: High ultrasound absorption at bone/soft tissue interfaces increased the volumes of target tissue that could be ablated. Models using simplified approximations produced temperature profiles closely matching both more comprehensive models and experimental results, with good agreement between 3D calculations and MRTI. The correlation coefficients between simulated and measured temperature profiles in phantoms ranged from 0.852 to 0.967 (p-value < 0.01) for the four models. CONCLUSIONS: Models using approximations of interstitial ultrasound energy deposition around bone/soft tissue interfaces produced temperature distributions in close agreement with comprehensive simulations and experimental measurements. These models may be applied to accurately predict temperatures produced by interstitial ultrasound ablation of tumours near and within bone, with applications toward treatment planning.


Assuntos
Modelos Teóricos , Neoplasias/terapia , Terapia por Ultrassom , Acústica , Animais , Temperatura Corporal , Osso e Ossos , Bovinos , Análise de Elementos Finitos , Músculos , Suínos
19.
Invest Ophthalmol Vis Sci ; 54(8): 5908-12, 2013 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-23920369

RESUMO

PURPOSE: To determine whether ultrasound treatment can promote the permeation of topical riboflavin into the corneal stroma. METHODS: Fresh cadaveric rabbit eyes with intact epithelium were left for 45 minutes in riboflavin 0.1% solution and divided in the following groups: A--untreated, epithelium-on; B--ultrasound-treated (1 W/cm(2) at 880 kHz for 6 minutes) with epithelium-on; and C--epithelium-off (no ultrasound). Eyes were removed from the riboflavin solution, corneas were excised, and group B was divided into B1 (with epithelium maintained) and B2 (epithelium removed for the fluorescence analysis). Confocal microscopy was performed to quantify the fluorescence intensity in the cornea according to the distance from the surface (with epithelium in groups A and B1; without epithelium in groups B2 and C). RESULTS: The average fluorescence intensity of riboflavin at a depth of 100, 150, 200, and 250 µm was 69.97, 58.83, 49.23, and 41.72 arbitrary units (A.U.) in group A, respectively; 255.26, 206.01, 159.81, 124.20 A.U. in group B1; 218.90, 177.90, 141.43, 110.45 A.U. in group B2; and 677.64, 420.10, 250.72 and 145.07 A.U. in group C. The difference in fluorescence was statistically significant between groups A and B1 (P = 0.001) and groups B2 and C (P < 0.0001). CONCLUSIONS: Ultrasound treatment increased the entry of topical riboflavin into the corneal stroma despite the presence of a previously intact epithelial barrier. This approach may offer a means of achieving clinically useful concentrations of riboflavin within the cornea with minimum epithelial damage, thereby improving the risk profile of corneal cross-linking procedures.


Assuntos
Substância Própria/metabolismo , Fonoforese/métodos , Fármacos Fotossensibilizantes/farmacocinética , Riboflavina/farmacocinética , Administração Tópica , Animais , Microscopia de Fluorescência , Fármacos Fotossensibilizantes/administração & dosagem , Coelhos , Riboflavina/administração & dosagem
20.
Int J Hyperthermia ; 29(4): 296-307, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23738697

RESUMO

Endoluminal and catheter-based ultrasound applicators are currently under development and are in clinical use for minimally invasive hyperthermia and thermal ablation of various tissue targets. Computational models play a critical role in device design and optimisation, assessment of therapeutic feasibility and safety, devising treatment monitoring and feedback control strategies, and performing patient-specific treatment planning with this technology. The critical aspects of theoretical modelling, applied specifically to endoluminal and interstitial ultrasound thermotherapy, are reviewed. Principles and practical techniques for modeling acoustic energy deposition, bioheat transfer, thermal tissue damage, and dynamic changes in the physical and physiological state of tissue are reviewed. The integration of these models and applications of simulation techniques in identification of device design parameters, development of real time feedback-control platforms, assessing the quality and safety of treatment delivery strategies, and optimisation of inverse treatment plans are presented.


Assuntos
Hipertermia Induzida , Modelos Biológicos , Desenho de Equipamento , Humanos , Hipertermia Induzida/instrumentação , Hipertermia Induzida/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...