Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 3072, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38594293

RESUMO

Engineering asymmetric transmission between left-handed and right-handed circularly polarized light in planar Fabry-Pérot (FP) microcavities would enable a variety of chiral light-matter phenomena, with applications in spintronics, polaritonics, and chiral lasing. Such symmetry breaking, however, generally requires Faraday rotators or nanofabricated polarization-preserving mirrors. We present a simple solution requiring no nanofabrication to induce asymmetric transmission in FP microcavities, preserving low mode volumes by embedding organic thin films exhibiting apparent circular dichroism (ACD); an optical phenomenon based on 2D chirality. Importantly, ACD interactions are opposite for counter-propagating light. Consequently, we demonstrated asymmetric transmission of cavity modes over an order of magnitude larger than that of the isolated thin film. Through circular dichroism spectroscopy, Mueller matrix ellipsometry, and simulation using theoretical scattering matrix methods, we characterize the spatial, spectral, and angular chiroptical responses of this 2D chiral microcavity.

2.
Nat Commun ; 15(1): 340, 2024 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-38184645

RESUMO

Realizing polariton states with high levels of chirality offers exciting prospects for quantum information, sensing, and lasing applications. Such chirality must emanate from either the involved optical resonators or the quantum emitters. Here, we theoretically demonstrate a rare opportunity for realizing polaritons with so-called 2D chirality by strong coupling of the optical modes of (high finesse) achiral Fabry-Pérot cavities with samples exhibiting "apparent circular dichroism" (ACD). ACD is a phenomenon resulting from an interference between linear birefringence and dichroic interactions. By introducing a quantum electrodynamical theory of ACD, we identify the design rules based on which 2D chiral polaritons can be produced, and their chirality can be optimized.

3.
J Am Chem Soc ; 143(51): 21519-21531, 2021 12 29.
Artigo em Inglês | MEDLINE | ID: mdl-34914380

RESUMO

Circular dichroism (CD) finds widespread application as an optical probe for the structure of molecules and supramolecular assemblies. Its underlying chiral light-matter interactions effectively couple between photonic spin states and select quantum-mechanical degrees of freedom in a sample, implying an intricate connection with photon-to-matter quantum transduction. However, effective transduction implementations likely require interactions that are antisymmetric with respect to the direction of light propagation through the sample, yielding an inversion of the chiroptical response upon sample flipping, which is uncommon for CD. Recent experiments on organic thin films have demonstrated such chiroptical behavior, which was attributed to "apparent CD" resulting from an interference between the sample's linear birefringence and linear dichroism. However, a theory connecting the underlying optical selection rules to the microscopic electronic structure of the constituent molecules remains to be formulated. Here, we present such a theory based on a combination of Mueller calculus and a Lorentz oscillator model. The theory reaches good agreement with experimental CD spectra and allows for establishing the (supra)molecular design rules for maximizing or minimizing this chiroptical effect. It furthermore highlights that, in addition to antisymmetrically, it can manifest symmetrically such that no chiroptical response inversion occurs, which is a consequence of a helical stacking of molecules in the light propagation direction.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...