Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Ultrason ; 24(94): 1-9, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38343785

RESUMO

Aim: Simulators for aortic dissection diagnosis are limited by complex anatomy influencing the accuracy of point-of-care ultrasound for diagnosing aortic dissection. Therefore, this study aimed to create a healthy ascending aorta and class DeBakey, type II aortic dissection simulator as a potential point-of-care ultrasound training model. Material and methods: 3D mould simulators were created based on computed tomography images of one healthy and one DeBakey type II aortic dissection patient. In the next step, two polyvinyl alcohol-based and two silicone-based simulators were synthesised. Results: The results of the scanning electron microscope assessment showed an aortic dissection simulator's surface with disorganised surface texture and higher root mean square (RMS or Rq) value than the healthy model of polyvinyl alcohol (RqAD = 20.28 > RqAAo = 10.26) and silicone (RqAD = 33.8 > RqAAo = 23.07). The ultrasound assessment of diameter aortic dissection showed higher than the healthy ascending aorta in polyvinyl alcohol (dAD = 28.2 mm > dAAo = 20.2 mm) and Si (dAD = 31.0 mm > dAAo = 22.4 mm), while the wall thickness of aortic dissection showed thinner than the healthy aorta in polyvinyl alcohol, which is comparable with the actual aorta measurement. The intimal flap of aortic dissection was able to replicate and showed a false lumen in the ultrasound images. The flap was measured quantitatively, indicating that the intimal flap was hyperechoic. Conclusions: The simulators were able to replicate the surface morphology and echogenicity of the intimal flap, which is a linear hyperechoic area representing the separation of the aorta wall.

2.
Sci Rep ; 12(1): 19200, 2022 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-36357456

RESUMO

Computer-aided Invasive Ductal Carcinoma (IDC) grading classification systems based on deep learning have shown that deep learning may achieve reliable accuracy in IDC grade classification using histopathology images. However, there is a dearth of comprehensive performance comparisons of Convolutional Neural Network (CNN) designs on IDC in the literature. As such, we would like to conduct a comparison analysis of the performance of seven selected CNN models: EfficientNetB0, EfficientNetV2B0, EfficientNetV2B0-21k, ResNetV1-50, ResNetV2-50, MobileNetV1, and MobileNetV2 with transfer learning. To implement each pre-trained CNN architecture, we deployed the corresponded feature vector available from the TensorFlowHub, integrating it with dropout and dense layers to form a complete CNN model. Our findings indicated that the EfficientNetV2B0-21k (0.72B Floating-Point Operations and 7.1 M parameters) outperformed other CNN models in the IDC grading task. Nevertheless, we discovered that practically all selected CNN models perform well in the IDC grading task, with an average balanced accuracy of 0.936 ± 0.0189 on the cross-validation set and 0.9308 ± 0.0211on the test set.


Assuntos
Carcinoma Ductal , Redes Neurais de Computação , Humanos , Publicações , Aprendizado de Máquina
3.
Biomater Adv ; 134: 112586, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35525733

RESUMO

Breast cancer is one of the most common types of cancer that contribute to high mortality worldwide. Hyperthermia (HT) was introduced as one of the alternative treatments to treat breast cancer but has major drawback of damaging normal adjacent cells. This study explores the integration effect of multiwalled­carbon nanotubes (MWCNTs) in combination with hyperthermia treatment for breast cancer therapy regimes. In this study, acid-functionalized MWCNTs (ox-MWCNTs) were prepared by acid washing methods using H2SO4/HNO3 (98%/68%) with the ratio of 3:1 (ν/ν) and characterized by colloidal dispersibility test, FTIR, TGA, XRD, FESEM and EDX analysis. EMT6 tumor-bearing mice were treated with ox-MWCNTs in combination with local HT at 43 °C. The tumor progression was monitored and the influence of immune response was evaluated. Results from this study demonstrated that mice from ox-MWCNTs in combination with local HT treatment group experienced complete tumor eradication, accompanied by a significant increase in median survival of the mice. Histological and immunohistochemical analysis of tumor tissues revealed that tumor treated with combined treatment underwent cell necrosis and there was a significant reduction of proliferating cells when compared to the untreated tumor. This observation is also accompanied with an increase in Hsp70 expression in tumor treated with HT. Flow cytometry analysis of the draining lymph nodes showed an increase in dendritic cells infiltration and maturation in mice treated with combined treatment. In addition, a significant increase of tumor-infiltrated CD8+ and CD4+ T cells along with macrophages and natural killer cells was observed in tumor treated with combined treatment. Altogether, results presented in this study suggested the potential of ox-MWCNTs-mediated HT as an anticancer therapeutic agent, hence might be beneficial in the future of breast cancer treatment.


Assuntos
Neoplasias da Mama , Hipertermia Induzida , Nanotubos de Carbono , Animais , Neoplasias da Mama/terapia , Terapia Combinada , Proteínas de Choque Térmico HSP70/metabolismo , Camundongos , Nanotubos de Carbono/química , Necrose
4.
Behav Neurol ; 2021: 2684855, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34777631

RESUMO

Spine surgeries impose risk to the spine's surrounding anatomical and physiological structures especially the spinal cord and the nerve roots. Intraoperative neuromonitoring (IONM) is a technology developed to monitor the integrity of the spinal cord and the nerve roots via the surgery. Transcranial motor evoked potential (TcMEP) (one of the IONM modalities) is adopted to monitor the integrity of the motor pathway of the spinal cord and the motor nerve roots. Recent research suggested that the IONM is conducive as a prognostic tool towards the patient's functional outcome. This paper summarizes the researches of IONM being adopted as a prognostic tool. In addition, this paper highlights the problems associated with the signal parameters as the improvement criteria in the previous researches. Lastly, we review the challenges of TcMEP to achieve a prognostic tool focusing on the factors that could interfere with the generation of a stable TcMEP response. The final section will discuss recommendations for IONM technology to achieve an objective prognostic tool.


Assuntos
Potencial Evocado Motor , Monitorização Neurofisiológica Intraoperatória , Humanos , Procedimentos Neurocirúrgicos , Medula Espinal , Coluna Vertebral/cirurgia
5.
Curr Med Imaging ; 16(6): 739-751, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32723246

RESUMO

BACKGROUND: Ultrasound (US) imaging can be a convenient and reliable substitute for magnetic resonance imaging in the investigation or screening of articular cartilage injury. However, US images suffer from two main impediments, i.e., low contrast ratio and presence of speckle noise. AIMS: A variation of anisotropic diffusion is proposed that can reduce speckle noise without compromising the image quality of the edges and other important details. METHODS: For this technique, four gradient thresholds were adopted instead of one. A new diffusivity function that preserves the edge of the resultant image is also proposed. To automatically terminate the iterative procedures, the Mean Absolute Error as its stopping criterion was implemented. RESULTS: Numerical results obtained by simulations unanimously indicate that the proposed method outperforms conventional speckle reduction techniques. Nevertheless, this preliminary study has been conducted based on a small number of asymptomatic subjects. CONCLUSION: Future work must investigate the feasibility of this method in a large cohort and its clinical validity through testing subjects with a symptomatic cartilage injury.


Assuntos
Cartilagem Articular/diagnóstico por imagem , Interpretação de Imagem Assistida por Computador/métodos , Articulação do Joelho/diagnóstico por imagem , Ultrassonografia/métodos , Anisotropia , Humanos , Osteoartrite do Joelho/diagnóstico por imagem , Razão Sinal-Ruído
6.
Curr Med Imaging Rev ; 15(10): 983-989, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-32008525

RESUMO

BACKGROUND: Bone Age Assessment (BAA) refers to a clinical procedure that aims to identify a discrepancy between biological and chronological age of an individual by assessing the bone age growth. Currently, there are two main methods of executing BAA which are known as Greulich-Pyle and Tanner-Whitehouse techniques. Both techniques involve a manual and qualitative assessment of hand and wrist radiographs, resulting in intra and inter-operator variability accuracy and time-consuming. An automatic segmentation can be applied to the radiographs, providing the physician with more accurate delineation of the carpal bone and accurate quantitative analysis. METHODS: In this study, we proposed an image feature extraction technique based on image segmentation with the fully convolutional neural network with eight stride pixel (FCN-8). A total of 290 radiographic images including both female and the male subject of age ranging from 0 to 18 were manually segmented and trained using FCN-8. RESULTS AND CONCLUSION: The results exhibit a high training accuracy value of 99.68% and a loss rate of 0.008619 for 50 epochs of training. The experiments compared 58 images against the gold standard ground truth images. The accuracy of our fully automated segmentation technique is 0.78 ± 0.06, 1.56 ±0.30 mm and 98.02% in terms of Dice Coefficient, Hausdorff Distance, and overall qualitative carpal recognition accuracy, respectively.


Assuntos
Determinação da Idade pelo Esqueleto/métodos , Ossos do Carpo/diagnóstico por imagem , Aprendizado Profundo , Redes Neurais de Computação , Adolescente , Negro ou Afro-Americano , Povo Asiático , Criança , Pré-Escolar , Feminino , Hispânico ou Latino , Humanos , Lactente , Recém-Nascido , Masculino , Fatores Sexuais , População Branca
7.
Med Biol Eng Comput ; 54(6): 967-81, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-27039402

RESUMO

Recently, there is an increasing interest in the use of local hyperthermia treatment for a variety of clinical applications. The desired therapeutic outcome in local hyperthermia treatment is achieved by raising the local temperature to surpass the tissue coagulation threshold, resulting in tissue necrosis. In oncology, local hyperthermia is used as an effective way to destroy cancerous tissues and is said to have the potential to replace conventional treatment regime like surgery, chemotherapy or radiotherapy. However, the inability to closely monitor temperature elevations from hyperthermia treatment in real time with high accuracy continues to limit its clinical applicability. Local hyperthermia treatment requires real-time monitoring system to observe the progression of the destroyed tissue during and after the treatment. Ultrasound is one of the modalities that have great potential for local hyperthermia monitoring, as it is non-ionizing, convenient and has relatively simple signal processing requirement compared to magnetic resonance imaging and computed tomography. In a two-dimensional ultrasound imaging system, changes in tissue microstructure during local hyperthermia treatment are observed in terms of pixel value analysis extracted from the ultrasound image itself. Although 2D ultrasound has shown to be the most widely used system for monitoring hyperthermia in ultrasound imaging family, 1D ultrasound on the other hand could offer a real-time monitoring and the method enables quantitative measurement to be conducted faster and with simpler measurement instrument. Therefore, this paper proposes a new local hyperthermia monitoring method that is based on one-dimensional ultrasound. Specifically, the study investigates the effect of ultrasound attenuation in normal and pathological breast tissue when the temperature in tissue is varied between 37 and 65 °C during local hyperthermia treatment. Besides that, the total protein content measurement was also conducted to investigate the relationship between attenuation and tissue denaturation level at different temperature ranges. The tissues were grouped according to their histology results, namely normal tissue with large predominance of cells (NPC), cancer tissue with large predominance of cells (CPC) and cancer with high collagen fiber content (CHF). The result shows that the attenuation coefficient of ultrasound measured following the local hyperthermia treatment increases with the increment of collagen fiber content in tissue as the CHF attenuated ultrasound at the highest rate, followed by NPC and CPC. Additionally, the attenuation increment is more pronounced at the temperature over 55 °C. This describes that the ultrasound wave experienced more energy loss when it propagates through a heated tissue as the tissue structure changes due to protein coagulation effect. Additionally, a significant increase in the sensitivity of attenuation to protein denaturation is also observed with the highest sensitivity obtained in monitoring NPC. Overall, it is concluded that one-dimensional ultrasound can be used as a monitoring method of local hyperthermia since its attenuation is very sensitive to the changes in tissue microstructure during hyperthermia.


Assuntos
Hipertermia Induzida/métodos , Monitorização Fisiológica , Ultrassom , Animais , Estudos de Viabilidade , Feminino , Glândulas Mamárias Animais/diagnóstico por imagem , Camundongos , Desnaturação Proteica , Processamento de Sinais Assistido por Computador , Temperatura
8.
Med Biol Eng Comput ; 54(9): 1363-73, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26463520

RESUMO

Breast cancer is the most common cancer among women globally, and the number of young women diagnosed with this disease is gradually increasing over the years. Mammography is the current gold-standard technique although it is known to be less sensitive in detecting tumors in woman with dense breast tissue. Detecting an early-stage tumor in young women is very crucial for better survival chance and treatment. The thermography technique has the capability to provide an additional functional information on physiological changes to mammography by describing thermal and vascular properties of the tissues. Studies on breast thermography have been carried out to improve the accuracy level of the thermography technique in various perspectives. However, the limitation of gathering women affected by cancer in different age groups had necessitated this comprehensive study which is aimed to investigate the effect of different density levels on the surface temperature distribution profile of the breast models. These models, namely extremely dense (ED), heterogeneously dense (HD), scattered fibroglandular (SF), and predominantly fatty (PF), with embedded tumors were developed using the finite element method. A conventional Pennes' bioheat model was used to perform the numerical simulation on different case studies, and the results obtained were then compared using a hypothesis statistical analysis method to the reference breast model developed previously. The results obtained show that ED, SF, and PF breast models had significant mean differences in surface temperature profile with a p value <0.025, while HD breast model data pair agreed with the null hypothesis formulated due to the comparable tissue composition percentage to the reference model. The findings suggested that various breast density levels should be considered as a contributing factor to the surface thermal distribution profile alteration in both breast cancer detection and analysis when using the thermography technique.


Assuntos
Densidade da Mama , Neoplasias da Mama/diagnóstico por imagem , Modelos Biológicos , Termografia/métodos , Temperatura Corporal , Neoplasias da Mama/patologia , Interpretação Estatística de Dados , Feminino , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA