Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Materials (Basel) ; 17(11)2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38893785

RESUMO

This study evaluates the enhancement of laser welding using ultrasonic waves aimed at reorganising the intermetallic position in such a fashion that leads to increased mechanical properties of welds in battery pack assemblies for electric vehicles. The experiment employed 20 kHz and 40 kHz High-Power Ultrasound Transducers (HPUTs) in both contact and contactless modes. A simplified experimental configuration is suggested to represent conditions similar to those found in electric vehicle battery pack assemblies. Measurements of vibration transmission to aluminium alloy 1050 plates revealed more than a 1000-fold increase in acceleration amplitude in contact mode compared to contactless mode. The 20 kHz transducer in contactless mode demonstrated superior performance, showing a 10% increase in load and 27% increase in extension compared to welding without ultrasonic assistance. On the other hand, the 40 kHz transducer, while still improved over non-ultrasonic methods, showed less pronounced benefits. This suggests that lower-frequency ultrasonic assistance (20 kHz) is more effective in this specific context. The study explores ultrasonic assistance in laser welding copper (Cu101) to aluminium alloy 1050 using 20 kHz and 40 kHz HPUTs, showing that both transducers enhance microstructural integrity by reducing copper homogenisation into aluminium, with the 20 kHz frequency proving more effective in this context. A numerical simulation was conducted to evaluate the transmission of pressure into the molten pool of the weld, correlated with the vibration results obtained from the 20 kHz transducer. The numerical simulation confirms that no cavitation is initiated in the molten pool area, and all improvements are solely due to the ultrasonic waves.

2.
Materials (Basel) ; 16(22)2023 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-38005093

RESUMO

This study focuses on Metal Additive Manufacturing (AM), an emerging method known for its ability to create lightweight components and intricate designs. However, Laser Powder Bed Fusion (LPBF), a prominent AM technique, faces a major challenge due to the development of high residual stress, resulting in flawed parts and printing failures. The study's goal was to assess the thermal behaviour of different support structures and optimised designs to reduce the support volume and residual stress while ensuring high-quality prints. To explore this, L-shaped specimens were printed using block-type support structures through an LPBF machine. This process was subsequently validated through numerical simulations, which were in alignment with experimental observations. In addition to block-type support structures, line, contour, and cone supports were examined numerically to identify the optimal solutions that minimise the support volume and residual stress while maintaining high-quality prints. The optimisation approach was based on the Design of Experiments (DOE) methodology and multi-objective optimisation. The findings revealed that block supports exhibited excellent thermal behaviour. High-density supports outperformed low-density alternatives in temperature distribution, while cone-type supports were more susceptible to warping. These insights provide valuable guidance for improving the metal AM and LPBF processes, enabling their broader use in industries like aerospace, medical, defence, and automotive.

3.
Materials (Basel) ; 16(1)2023 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-36614749

RESUMO

This paper explains the use of remote ultrasound vibration at the optimum position and frequencies to vibrate plates under welding, with the aim of initiating cavitation in the molten pool area. It has been shown in the literature that ultrasound cavitation changes microstructure morphology and refines the grain of the weld. In practice, the plates are excited through narrow-band high-power ultrasound transducers (HPUTs). Therefore, a theoretical investigation is carried out to identify the plate-mode shapes due to the ultrasound vibration aligned with the frequency bandwidth of HPUTs available in the marketplace. The effect of exciting the plate at different locations and frequencies is studied to find the optimum position and frequencies to achieve the maximum pressure at the area of the fusion zone. It was shown that applying the excitation from the side of the plate produces an order of 103 higher vibration displacement amplitude, compared with excitation from the corner. The forced vibration of cavitation and bursting time are studied to identify vibration amplitude and the time required to generate and implode cavities, hence specifying the vibration-assisted welding time. Thus, the proposed computational platform enables efficient multiparametric analysis of cavitation, initiated by remote ultrasound excitation, in the molten pool under welding.

4.
Biotechnol Lett ; 32(6): 803-9, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20213530

RESUMO

Recombinant coagulation factor VII (FVII) is used as a potential therapeutic intervention in hemophilia patients who produce antibodies against the coagulation factors. Mammalian cell lines provide low levels of expression, however, the Spodoptera frugiperda Sf9 cell line and baculovirus expression system are powerful systems for high-level expression of recombinant proteins, but due to the lack of endogenous vitamin K-dependent carboxylase, expression of functional FVII using this system is impossible. In the present study, we report a simple but versatile method to overcome the defect for high-level expression of the functional recombinant coagulation FVII in Sf9 cells. This method involves simultaneous expression of both human gamma-carboxylase (hGC) and human FVII genes in the host. It may be possible to express other vitamin K-dependent coagulation factors using this method in the future.


Assuntos
Baculoviridae/genética , Fator VII/biossíntese , Expressão Gênica , Vetores Genéticos , Animais , Carbono-Carbono Ligases/biossíntese , Carbono-Carbono Ligases/genética , Linhagem Celular , Fator VII/genética , Humanos , Dados de Sequência Molecular , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/genética , Análise de Sequência de DNA , Spodoptera
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA