Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Apoptosis ; 29(3-4): 321-330, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37796354

RESUMO

The removal of dead cells (efferocytosis) contributes to the resolution of the infection and preservation of the tissue. Depending on the environment milieu, macrophages may show inflammatory (M1) or anti-inflammatory (M2) phenotypes. Inflammatory leukocytes are recruited during infection, followed by the accumulation of infected and non-infected apoptotic cells (AC). Efferocytosis of non-infected AC promotes TGF-ß, IL-10, and PGE2 production and the polarization of anti-inflammatory macrophages. These M2 macrophages acquire an efficient ability to remove apoptotic cells that are involved in tissue repair and resolution of inflammation. On the other hand, the impact of efferocytosis of infected apoptotic cells on macrophage activation profile remains unknown. Here, we are showing that the efferocytosis of gram-positive Streptococcus pneumoniae-AC (Sp-AC) or gram-negative Klebsiella pneumoniae-AC (Kp-AC) promotes distinct gene expression and cytokine signature in macrophages. Whereas the efferocytosis of Kp-AC triggered a predominant M1 phenotype in vitro and in vivo, the efferocytosis of Sp-AC promoted a mixed M1/M2 activation in vitro and in vivo in a model of allergic asthma. Together, these findings suggest that the nature of the pathogen and antigen load into AC may have different impacts on inducing macrophage polarization.


Assuntos
Apoptose , Fagocitose , Macrófagos/metabolismo , Fenótipo , Anti-Inflamatórios
2.
Bio Protoc ; 13(24): e4903, 2023 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-38156029

RESUMO

Clearance of dying cells, named efferocytosis, is a pivotal function of professional phagocytes that impedes the accumulation of cell debris. Efferocytosis can be experimentally assessed by differentially tagging the target cells and professional phagocytes and analyzing by cell imaging or flow cytometry. Here, we describe an assay to evaluate the uptake of apoptotic cells (ACs) by human macrophages in vitro by labeling the different cells with commercially available dyes and analysis by flow cytometry. We detail the methods to prepare and label human macrophages and apoptotic lymphocytes and the in vitro approach to determine AC uptake. This protocol is based on previously published literature and allows for in vitro modeling of the efficiency of AC engulfment during continual efferocytosis process. Also, it can be modified to evaluate the clearance of different cell types by diverse professional phagocytes.

3.
J Infect Dis ; 2023 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-38015657

RESUMO

BACKGROUND: The inflammation in the lungs and other vital organs in COVID-19 are characterized by the presence of neutrophils and high concentration of neutrophil extracellular traps (NETs), which also seems to mediate host tissue damage. However, it is not known whether NETs could have virucidal activity against SARS-CoV-2. METHODS: We investigated whether NETs could prevent SARS-CoV-2 replication in neutrophils and epithelial cells, and what the consequence of NETs degradation in K18-humanized ACE2 transgenic mice infected with SARS-CoV-2. RESULTS: Here, by immunofluorescence microscopy we observed that viral particles co-localize with NETs in neutrophils isolated from COVID-19 patients or from healthy individuals and infected in vitro. The inhibition of NETs production increased virus replication in neutrophils. In parallel, we observed that NETs inhibited virus abilities to infect and replicate in epithelial cells after 24 h of infection. Degradation of NETs with DNase I prevented their virucidal effect in vitro. Using K18-humanized ACE2 transgenic mice we observed a higher viral load in animals treated with DNase I. On the other hand, the virucidal effect of NETs was not dependent on neutrophil elastase or myeloperoxidase activity. CONCLUSION: Our results provide evidence of the role of NETosis as a mechanism of SARS-CoV-2 viral capture and inhibition.

4.
J Clin Invest ; 133(12)2023 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-37104043

RESUMO

Patients with severe COVID-19 develop acute respiratory distress syndrome (ARDS) that may progress to cytokine storm syndrome, organ dysfunction, and death. Considering that complement component 5a (C5a), through its cellular receptor C5aR1, has potent proinflammatory actions and plays immunopathological roles in inflammatory diseases, we investigated whether the C5a/C5aR1 pathway could be involved in COVID-19 pathophysiology. C5a/C5aR1 signaling increased locally in the lung, especially in neutrophils of critically ill patients with COVID-19 compared with patients with influenza infection, as well as in the lung tissue of K18-hACE2 Tg mice (Tg mice) infected with SARS-CoV-2. Genetic and pharmacological inhibition of C5aR1 signaling ameliorated lung immunopathology in Tg-infected mice. Mechanistically, we found that C5aR1 signaling drives neutrophil extracellular traps-dependent (NETs-dependent) immunopathology. These data confirm the immunopathological role of C5a/C5aR1 signaling in COVID-19 and indicate that antagonists of C5aR1 could be useful for COVID-19 treatment.


Assuntos
COVID-19 , Armadilhas Extracelulares , Humanos , Animais , Camundongos , COVID-19/genética , COVID-19/patologia , Armadilhas Extracelulares/metabolismo , Tratamento Farmacológico da COVID-19 , SARS-CoV-2/metabolismo , Pulmão/patologia , Complemento C5a/genética , Complemento C5a/metabolismo
5.
Immunohorizons ; 6(7): 559-568, 2022 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-35882422

RESUMO

Apoptotic cell clearance by professional and nonprofessional phagocytes in the process of efferocytosis is critical to preserve tissue homeostasis. Uptake of apoptotic cells by dendritic cells generates regulatory T cells and induces immunologic tolerance against self-antigens. In contrast, ingestion of infected apoptotic cells promotes activation of TLR4/MyD88-dependent bone marrow-derived dendritic cells (BMDCs) and triggers Th17 cell differentiation. In this study, we evaluated the impact of Streptococcus pneumoniae-infected apoptotic cell efferocytosis by BMDCs derived from C57BL/6 mice on differentiation and expansion of CD4+ T cell subsets, as well as the role of TLR2/4 and receptor-interacting protein 2 (RIP2) receptors in recognizing intracellular pathogens during efferocytosis. We demonstrated that BMDC-mediated efferocytosis of S. pneumoniae-infected apoptotic cells induced Th1 cell differentiation and expansion. Although TLR2/4 and RIP2 deficiency in BMDCs did not affect Th1 cell differentiation during efferocytosis, the absence of RIP2 decreased IFN-γ production by CD4 T cells during the expansion phase. These findings suggest that RIP2-mediated IL-1ß production during efferocytosis of S. pneumoniae-infected apoptotic cells partially supports a Th1-mediated IFN-γ production microenvironment.


Assuntos
Linfócitos T CD4-Positivos , Interferon gama/biossíntese , Streptococcus pneumoniae , Receptor 2 Toll-Like , Ubiquitina-Proteína Ligases/metabolismo , Animais , Apoptose , Interferon gama/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Transdução de Sinais , Células Th1 , Receptor 2 Toll-Like/metabolismo
6.
Elife ; 112022 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-35666101

RESUMO

COVID-19 is a disease of dysfunctional immune responses, but the mechanisms triggering immunopathogenesis are not established. The functional plasticity of macrophages allows this cell type to promote pathogen elimination and inflammation or suppress inflammation and promote tissue remodeling and injury repair. During an infection, the clearance of dead and dying cells, a process named efferocytosis, can modulate the interplay between these contrasting functions. Here, we show that engulfment of SARS-CoV-2-infected apoptotic cells exacerbates inflammatory cytokine production, inhibits the expression of efferocytic receptors, and impairs continual efferocytosis by macrophages. We also provide evidence supporting that lung monocytes and macrophages from severe COVID-19 patients have compromised efferocytic capacity. Our findings reveal that dysfunctional efferocytosis of SARS-CoV-2-infected cell corpses suppresses macrophage anti-inflammation and efficient tissue repair programs and provides mechanistic insights for the excessive production of pro-inflammatory cytokines and accumulation of tissue damage associated with COVID-19 immunopathogenesis.


Assuntos
COVID-19 , SARS-CoV-2 , Anti-Inflamatórios/farmacologia , Apoptose , Humanos , Macrófagos/metabolismo , Fagocitose
7.
Proc Natl Acad Sci U S A ; 117(48): 30619-30627, 2020 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-33184178

RESUMO

The initial production of inflammatory mediators dictates host defense as well as tissue injury. Inflammasome activation is a constituent of the inflammatory response by recognizing pathogen and host-derived products and eliciting the production of IL-1ß and IL-18 in addition to inducing a type of inflammatory cell death termed "pyroptosis." Leukotriene B4 (LTB4) is a lipid mediator produced quickly (seconds to minutes) by phagocytes and induces chemotaxis, increases cytokine/chemokine production, and enhances antimicrobial effector functions. Whether LTB4 directly activates the inflammasome remains to be determined. Our data show that endogenously produced LTB4 is required for the expression of pro-IL-1ß and enhances inflammasome assembly in vivo and in vitro. Furthermore, LTB4-mediated Bruton's tyrosine kinase (BTK) activation is required for inflammasome assembly in vivo as well for IL-1ß-enhanced skin host defense. Together, these data unveil a new role for LTB4 in enhancing the expression and assembly of inflammasome components and suggest that while blocking LTB4 actions could be a promising therapeutic strategy to prevent inflammasome-mediated diseases, exogenous LTB4 can be used as an adjuvant to boost inflammasome-dependent host defense.


Assuntos
Interações Hospedeiro-Patógeno , Inflamassomos/metabolismo , Leucotrieno B4/metabolismo , Fenômenos Fisiológicos da Pele , Pele/metabolismo , Animais , Biópsia , Citocinas/metabolismo , Interações Hospedeiro-Patógeno/imunologia , Imunidade Inata , Mediadores da Inflamação/metabolismo , Macrófagos/imunologia , Macrófagos/metabolismo , Staphylococcus aureus Resistente à Meticilina , Camundongos , Pele/imunologia , Pele/microbiologia , Pele/patologia
8.
Artigo em Inglês | MEDLINE | ID: mdl-31451502

RESUMO

The available antifungal therapeutic arsenal is limited. The search for alternative drugs with fewer side effects and new targets remains a major challenge. Decyl gallate (G14) is a derivative of gallic acid with a range of biological activities and broad-spectrum antifungal activity. Previously, our group demonstrated the promising anti-Paracoccidioides activity of G14. In this work, to evaluate the antifungal characteristics of G14 for Paracoccidioides lutzii, a chemical-genetic interaction analysis was conducted on a Saccharomyces cerevisiae model. N-glycosylation and/or the unfolded protein response pathway was identified as a high-confidence process for drug target prediction. The overactivation of unfolded protein response (UPR) signaling was confirmed using this model with IRE1/ATF6/PERK genes tagged with green fluorescent protein (GFP). In P. lutzii, this prediction was confirmed by the low activity of glycosylated enzymes [α-(1,3)-glucanase, N-acetyl-ß-d-glucosaminidase (NAGase), and α-(1,4)-amylase], by hyperexpression of genes involved with the UPR and glycosylated enzymes, and by the reduction in the amounts of glycosylated proteins and chitin. All of these components are involved in fungal cell wall integrity and are dependent on the N-glycosylation process. This loss of integrity was confirmed by the reduction in mitochondrial activity, impaired budding, enhancement of wall permeability, and a decrease in viability. These events led to a reduction of the ability of fungi to adhere on human lung epithelial cells (A549) in vitro Therefore, G14 may have an important role in balancing the inflammatory reaction caused by fungal infection, without interfering with the microbicidal activity of nitric oxide. This work provides new information on the activity of G14, a potential anti-Paracoccidioides compound.


Assuntos
Antifúngicos/farmacologia , Ácido Gálico/farmacologia , Glicosilação/efeitos dos fármacos , Paracoccidioides/efeitos dos fármacos , Células A549 , Linhagem Celular Tumoral , Parede Celular/efeitos dos fármacos , Parede Celular/metabolismo , Quitina/metabolismo , Proteínas Fúngicas/metabolismo , Proteínas de Fluorescência Verde/metabolismo , Humanos , Pulmão/microbiologia , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Paracoccidioides/metabolismo , Paracoccidioidomicose/tratamento farmacológico , Paracoccidioidomicose/metabolismo , Paracoccidioidomicose/microbiologia , Saccharomyces cerevisiae/efeitos dos fármacos , Saccharomyces cerevisiae/metabolismo , Resposta a Proteínas não Dobradas/efeitos dos fármacos
9.
Proc Natl Acad Sci U S A ; 115(36): E8469-E8478, 2018 09 04.
Artigo em Inglês | MEDLINE | ID: mdl-30127026

RESUMO

Inflammatory responses are terminated by the clearance of dead cells, a process termed efferocytosis. A consequence of efferocytosis is the synthesis of the antiinflammatory mediators TGF-ß, PGE2, and IL-10; however, the efferocytosis of infected cells favors Th17 responses by eliciting the synthesis of TGF-ß, IL-6, and IL-23. Recently, we showed that the efferocytosis of apoptotic Escherichia coli-infected macrophages by dendritic cells triggers PGE2 production in addition to pro-Th17 cytokine expression. We therefore examined the role of PGE2 during Th17 differentiation and intestinal pathology. The efferocytosis of apoptotic E. coli-infected cells by dendritic cells promoted high levels of PGE2, which impaired IL-1R expression via the EP4-PKA pathway in T cells and consequently inhibited Th17 differentiation. The outcome of murine intestinal Citrobacter rodentium infection was dependent on the EP4 receptor. Infected mice treated with EP4 antagonist showed enhanced intestinal defense against C. rodentium compared with infected mice treated with vehicle control. Those results suggest that EP4 signaling during infectious colitis could be targeted as a way to enhance Th17 immunity and host defense.


Assuntos
Citrobacter rodentium/imunologia , Colite/imunologia , Células Dendríticas/imunologia , Dinoprostona/imunologia , Infecções por Enterobacteriaceae/imunologia , Intestinos/imunologia , Macrófagos/imunologia , Animais , Colite/microbiologia , Colite/patologia , Células Dendríticas/microbiologia , Células Dendríticas/patologia , Infecções por Enterobacteriaceae/microbiologia , Infecções por Enterobacteriaceae/patologia , Feminino , Intestinos/microbiologia , Macrófagos/microbiologia , Macrófagos/patologia , Camundongos , Receptores de Prostaglandina E Subtipo EP4/imunologia
10.
J Biophotonics ; 11(1)2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-28516508

RESUMO

Pneumonia is the main cause of children mortality worldwide, and its major treatment obstacle stems from the microorganisms increasing development of resistance to several antibiotics. Photodynamic therapy has been presenting, for the last decades, promising results for some subtypes of cancer and infections. In this work we aimed to develop a safe and efficient in vitro protocol for photodynamic inactivation of Streptococcus pneumoniae, one of the most commonly found bacteria in pneumonia cases, using two near-infrared light sources and indocyanine green, a FDA approved dye. Photodynamic inactivation experiments with bacteria alone allowed to determine the best parameters for microbial inactivation. Cytotoxicity assays with RAW 264.7 macrophages evaluated the safety of the PDI. To determine if the photodynamic inactivation had a positive or negative effect on the natural killing action of macrophages, we selected and tested fewer indocyanine green concentrations and 10 J/cm2 on macrophage-S. pneumoniae co-cultures. We concluded that ICG has potential as a photosensitizer for near-infrared photodynamic inactivation of S. pneumoniae, producing minimum negative impact on RAW 264.7 macrophages and having a positive interaction with the immune cell's microbicidal action.


Assuntos
Raios Infravermelhos , Macrófagos/microbiologia , Viabilidade Microbiana/efeitos dos fármacos , Viabilidade Microbiana/efeitos da radiação , Fármacos Fotossensibilizantes/farmacologia , Streptococcus pneumoniae/efeitos dos fármacos , Streptococcus pneumoniae/efeitos da radiação , Animais , Técnicas de Cocultura , Verde de Indocianina/farmacologia , Macrófagos/efeitos dos fármacos , Macrófagos/efeitos da radiação , Camundongos , Células RAW 264.7 , Streptococcus pneumoniae/fisiologia
11.
Innate Immun ; 23(3): 219-227, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28359217

RESUMO

Alveolar macrophages (AMs) are multitasking cells that maintain lung homeostasis by clearing apoptotic cells (efferocytosis) and performing antimicrobial effector functions. Different PRRs have been described to be involved in the binding and capture of non-opsonized Streptococcus pneumoniae, such as TLR-2, mannose receptor (MR) and scavenger receptors (SRs). However, the mechanism by which the ingestion of apoptotic cells negatively influences the clearance of non-opsonized S. pneumoniae remains to be determined. In this study, we evaluated whether the prostaglandin E2 (PGE2) produced during efferocytosis by AMs inhibits the ingestion and killing of non-opsonized S. pneumoniae. Resident AMs were pre-treated with an E prostanoid (EP) receptor antagonist, inhibitors of cyclooxygenase and protein kinase A (PKA), incubated with apoptotic Jurkat T cells, and then challenged with S. pneumoniae. Efferocytosis slightly decreased the phagocytosis of S. pneumoniae but greatly inhibited bacterial killing by AMs in a manner dependent on PGE2 production, activation of the EP2-EP4/cAMP/PKA pathway and inhibition of H2O2 production. Our data suggest that the PGE2 produced by AMs during efferocytosis inhibits H2O2 production and impairs the efficient clearance non-opsonized S. pneumoniae by EP2-EP4/cAMP/PKA pathway.


Assuntos
Dinoprostona/metabolismo , Macrófagos Alveolares/imunologia , Fagocitose , Infecções Pneumocócicas/imunologia , Streptococcus pneumoniae/imunologia , Animais , Apoptose , Bacteriólise , AMP Cíclico/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Feminino , Homeostase , Humanos , Peróxido de Hidrogênio/metabolismo , Células Jurkat , Macrófagos Alveolares/microbiologia , Ratos , Ratos Wistar , Receptores de Prostaglandina E Subtipo EP2/metabolismo , Receptores de Prostaglandina E Subtipo EP4/metabolismo , Transdução de Sinais
12.
Immunology ; 151(3): 304-313, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28267881

RESUMO

Efferocytosis, or clearance of apoptotic cells (ACs), by dendritic cells (DCs) leads to immune response suppression and tolerance to self-antigens. However, efferocytosis of infected apoptotic cells (IACs) leads to the production of a mixed pro- and anti-inflammatory cytokine milieu. We examined the DC phenotype and ability to migrate after phagocytosis of ACs or IACs and observed higher levels of CD86 and CCR7 expression in DCs, as well as enhanced migration capacity following efferocytosis of IACs. Interestingly, higher levels of interleukin-1ß, interleukin-10 and prostaglandin E2 (PGE2 ) were also produced in this context. Blockage of IAC recognition led to an impaired maturation profile and PGE2 production, which may have contributed to reduced CD86 and CCR7 expression and migration capacity. These data contribute to the understanding of how efferocytosis of sterile or infected cells may regulate the adaptive immune response, although the precise role of PGE2 in this process requires further investigation.


Assuntos
Apoptose , Quimiotaxia , Células Dendríticas/patologia , Infecções por Escherichia coli/patologia , Linfonodos/patologia , Macrófagos/patologia , Fagocitose , Animais , Antígeno B7-2/metabolismo , Quimiocina CCL19/metabolismo , Quimiocina CCL21/metabolismo , Técnicas de Cocultura , Células Dendríticas/imunologia , Células Dendríticas/metabolismo , Células Dendríticas/microbiologia , Dinoprostona/metabolismo , Infecções por Escherichia coli/imunologia , Infecções por Escherichia coli/metabolismo , Infecções por Escherichia coli/microbiologia , Feminino , Mediadores da Inflamação/metabolismo , Linfonodos/imunologia , Linfonodos/metabolismo , Macrófagos/imunologia , Macrófagos/metabolismo , Macrófagos/microbiologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Fenótipo , Células RAW 264.7 , Receptores CCR7/metabolismo , Transdução de Sinais
13.
Physiol Rep ; 5(5)2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28292878

RESUMO

Infectious pneumonia is a major cause of morbidity/mortality, mainly because of the increasing rate of microorganisms resistant to antibiotics. Photodynamic Therapy (PDT) is emerging as a promising approach, as effects are based on oxidative stress, preventing microorganism resistance. In two previous studies, the in vitro inactivation of Streptococcus pneumoniae using indocyanine green (ICG) and infrared light source was a success killing 5 log10 colony-forming units (CFU/mL) with only 10 µmol/L ICG. In this work, a proof-of-principle protocol was designed to treat lung infections by PDT using extracorporeal illumination with a 780 nm laser device and also ICG as photosensitizer. Hairless mice were infected with S. pneumoniae and PDT was performed two days after infection. For control groups, CFU recovery ranged between 103-104/mouse. For PDT group, however, no bacteria were recovered in 80% of the animals. Based on this result, animal survival was evaluated separately over 50 days. No deaths occurred in PDT group, whereas 60% of the control group died. Our results indicate that extracorporeal PDT has the potential for pneumonia treatment, and pulmonary decontamination with PDT may be used as a single therapy or as an antibiotics adjuvant.


Assuntos
Fotoquimioterapia/métodos , Fármacos Fotossensibilizantes/farmacologia , Fototerapia/métodos , Pneumonia Pneumocócica/terapia , Animais , Modelos Animais de Doenças , Verde de Indocianina/farmacologia , Camundongos , Streptococcus pneumoniae , Resultado do Tratamento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...