Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 81
Filtrar
1.
Plant Cell ; 2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38518124

RESUMO

Arabidopsis (Arabidopsis thaliana) PROTEIN ARGININE METHYLTRANSFERASE5 (PRMT5) post-translationally modifies RNA-binding proteins by arginine (R) methylation. However, the impact of this modification on the regulation of RNA processing is largely unknown. We used the spliceosome component, SM-LIKE PROTEIN 4 (LSM4), as a paradigm to study the role of R-methylation in RNA processing. We found that LSM4 regulates alternative splicing (AS) of a suite of its in vivo targets identified here. The lsm4 and prmt5 mutants show a considerable overlap of genes with altered AS raising the possibility that splicing of those genes could be regulated by PRMT5-dependent LSM4 methylation. Indeed, LSM4 methylation impacts AS, particularly of genes linked with stress response. Wild-type LSM4 and an unmethylable version complement the lsm4-1 mutant, suggesting that methylation is not critical for growth in normal environments. However, LSM4 methylation increases with abscisic acid and is necessary for plants to grow under abiotic stress. Conversely, bacterial infection reduces LSM4 methylation, and plants that express unmethylable-LSM4 are more resistant to Pseudomonas than those expressing wild-type LSM4. This tolerance correlates with decreased intron retention of immune-response genes upon infection. Taken together, this provides direct evidence that R-methylation adjusts LSM4 function on pre-mRNA splicing in an antagonistic manner in response to biotic and abiotic stress.

2.
Plant Physiol ; 2023 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-38124468

RESUMO

C-REPEAT BINDING FACTORS (CBFs) are highly conserved plant transcription factors that promote cold tolerance. In Arabidopsis (Arabidopsis thaliana), three CBFs (CBF1-3) play a critical role in cold acclimation, and the expression of their corresponding genes is rapidly and transiently induced during this adaptive response. Cold induction of CBFs has been extensively studied and shown to be tightly controlled, yet the molecular mechanisms that restrict the expression of each CBF after their induction during cold acclimation are poorly understood. Here, we present genetic and molecular evidence that the decline in the induction of CBF3 during cold acclimation is epigenetically regulated through the Polycomb Repressive Complex (PRC) 2. We show that this complex promotes the deposition of the repressive mark H3K27me3 at the coding region of CBF3, silencing its expression. Our results indicate that the cold-inducible long noncoding RNA SVALKA is essential for this regulation by recruiting PRC2 to CBF3. These findings unveil a SVALKA-PRC2 regulatory module that ensures the precise timing of CBF3 induction during cold acclimation and the correct development of this adaptive response.

3.
Rev. Fac. Med. Hum ; 23(3)jul. 2023.
Artigo em Espanhol | LILACS-Express | LILACS | ID: biblio-1535194

RESUMO

El cáncer de mama sigue siendo la neoplasia maligna más frecuente y una de las mortales en mujeres, considerándose un importante objetivo de la salud global y prioridad en salud pública. Con el uso de terapias innovadoras, ha mejorado la supervivencia, apareciendo condiciones asociadas, como el síndrome genitourinario menopaúsico. La terapia hormonal, se utiliza para el manejo de esta condición, mejorando sustancialmente la sintomatología, e incluso, siendo en algunos casos la única solución. La más utilizada, es la terapia de estrógenos vaginales. Sin embargo, se ha descrito un posible riesgo de recurrencia de cáncer de mama con su uso. En habla hispana, no existe evidencia que haya discutido este tópico. Se llevó a cabo una búsqueda en las bases PubMed, ScienceDirect y MEDLINE, utilizando los términos "Terapia de estrógenos vaginales", "Recurrencia" y "Cáncer de mama". Se encontró, que, de forma global, la terapia de estrógenos vaginales es una opción terapéutica eficaz y segura en el manejo del síndrome genitourinario menopaúsico en mujeres con antecedente de cáncer de mama, sin incrementar el riesgo de recurrencia, a excepción de aquellas tratadas con inhibidores de la aromatasa, en quienes se recomienda el uso de otras terapias para evitar acarrear este riesgo.


Breast cancer remains the most common malignant neoplasm and one of the leading causes of mortality in women, making it a significant target for global health efforts and a public health priority. Through the use of innovative therapies, survival rates have improved, leading to the emergence of associated conditions such as genitourinary menopausal syndrome. Hormonal therapy is employed for managing this condition, significantly alleviating its symptoms and, in some cases, serving as the sole solution. The most commonly utilized approach is vaginal estrogen therapy. Nevertheless, there have been reports of a potential risk of breast cancer recurrence associated with its use. In the Spanish-speaking context, there is limited evidence discussing this topic. A search was conducted across PubMed, ScienceDirect, and MEDLINE databases, using the terms "Vaginal Estrogen Therapy", "Recurrence" and "Breast Cancer." It was determined that, on a global scale, vaginal estrogen therapy is an effective and safe therapeutic option for managing genitourinary menopausal syndrome in women with a history of breast cancer. This therapy does not appear to increase the risk of recurrence, with the exception of those undergoing treatment with aromatase inhibitors. For these individuals, alternative therapies are recommended to mitigate this potential risk.

4.
Health Sci Rep ; 6(6): e1344, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37359410

RESUMO

Background and Aims: During the COVID-19 pandemic, mental health became a relevant factor in people's performance within organizations. The aim of this study was to analyze the effects of an organizational intervention program on the psychosocial factors of demands, resources, and the consequences of psychosocial risks in a technology services company during the COVID-19 pandemic. Methods: A quasiexperimental study was carried out with 105 employees who took part in an 8-week intervention program divided into two large stages. Pre- and postmeasurements were collected using the UNIPSICO Questionnaire, considering its factors of demands, resources, and consequences of psychosocial risks. The Spanish Burnout Inventory (SBI) was also included. Results: The results showed significant improvements in the perception of the following psychosocial demand factors: Role conflict (p < 0.001), Role ambiguity, workload, interpersonal conflicts (p < 0.05). In the resource factors: autonomy, work social support, feedback (p < 0.001) Resources at work, transformational leadership, and self-efficacy (p < 0.05). In addition, all the consequences of psychosocial risks have improvements: Indolence, emotional exhaustion, and job satisfaction (p < 0.001), Burnout syndrome, enthusiasm toward the job, and psychosomatic problems (p < 0.05), except the Guilt dimension of the SBI. Conclusion: We can conclude that the program was effective and that the study limitations should be improved in future studies.

5.
Life Sci Alliance ; 6(1)2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36265897

RESUMO

The coordination of cell division with stress response is essential for maintaining genome stability in plant meristems. Proteins involved in pre-mRNA splicing are important for these processes in animal and human cells. Based on its homology to the splicing factor SART1, which is implicated in the control of cell division and genome stability in human cells, we analyzed if MDF has similar functions in plants. We found that MDF associates with U4/U6.U5 tri-snRNP proteins and is essential for correct splicing of 2,037 transcripts. Loss of MDF function leads to cell division defects and cell death in meristems and was associated with up-regulation of stress-induced genes and down-regulation of mitotic regulators. In addition, the mdf-1 mutant is hypersensitive to DNA damage treatment supporting its role in coordinating stress response with cell division. Our analysis of a dephosphomutant of MDF suggested how its protein activity might be controlled. Our work uncovers the conserved function of a plant splicing factor and provides novel insight into the interplay of pre-mRNA processing and genome stability in plants.


Assuntos
Arabidopsis , Ribonucleoproteína Nuclear Pequena U5 , Animais , Humanos , Arabidopsis/genética , Arabidopsis/metabolismo , Divisão Celular/genética , Instabilidade Genômica , Ribonucleoproteína Nuclear Pequena U4-U6/genética , Ribonucleoproteína Nuclear Pequena U4-U6/metabolismo , Ribonucleoproteína Nuclear Pequena U5/genética , Ribonucleoproteína Nuclear Pequena U5/metabolismo , Precursores de RNA/genética , Precursores de RNA/metabolismo , Fatores de Processamento de RNA/genética
6.
Plant Physiol ; 187(3): 1534-1550, 2021 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-34618031

RESUMO

The prefoldin complex (PFDc) was identified in humans as a co-chaperone of the cytosolic chaperonin T-COMPLEX PROTEIN RING COMPLEX (TRiC)/CHAPERONIN CONTAINING TCP-1 (CCT). PFDc is conserved in eukaryotes and is composed of subunits PFD1-6, and PFDc-TRiC/CCT folds actin and tubulins. PFDs also participate in a wide range of cellular processes, both in the cytoplasm and in the nucleus, and their malfunction causes developmental alterations and disease in animals and altered growth and environmental responses in yeast and plants. Genetic analyses in yeast indicate that not all of their functions require the canonical complex. The lack of systematic genetic analyses in plants and animals, however, makes it difficult to discern whether PFDs participate in a process as the canonical complex or in alternative configurations, which is necessary to understand their mode of action. To tackle this question, and on the premise that the canonical complex cannot be formed if one subunit is missing, we generated an Arabidopsis (Arabidopsis thaliana) mutant deficient in the six PFDs and compared various growth and environmental responses with those of the individual mutants. In this way, we demonstrate that the PFDc is required for seed germination, to delay flowering, or to respond to high salt stress or low temperature, whereas at least two PFDs redundantly attenuate the response to osmotic stress. A coexpression analysis of differentially expressed genes in the sextuple mutant identified several transcription factors, including ABA INSENSITIVE 5 (ABI5) and PHYTOCHROME-INTERACTING FACTOR 4, acting downstream of PFDs. Furthermore, the transcriptomic analysis allowed assigning additional roles for PFDs, for instance, in response to higher temperature.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Chaperonas Moleculares/genética , Fatores de Transcrição/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Chaperonas Moleculares/metabolismo , Fatores de Transcrição/metabolismo
8.
Plant Physiol ; 187(1): 462-471, 2021 09 04.
Artigo em Inglês | MEDLINE | ID: mdl-34618146

RESUMO

Plants react to environmental challenges by integrating external cues with endogenous signals to optimize survival and reproductive success. However, the mechanisms underlying this integration remain obscure. While stress conditions are known to impact plant development, how developmental transitions influence responses to adverse conditions has not been addressed. Here, we reveal a molecular mechanism of stress response attenuation during the onset of flowering in Arabidopsis (Arabidopsis thaliana). We show that Arabidopsis MORF-RELATED GENE (MRG) proteins, components of the NuA4 histone acetyltransferase complex that bind trimethylated-lysine 36 in histone H3 (H3K36me3), function as a chromatin switch on the floral integrator SUPPRESSOR OF OVEREXPRESSION OF CONSTANS 1 (SOC1) to coordinate flowering initiation with plant responsiveness to hostile environments. MRG proteins are required to activate SOC1 expression during flowering induction by promoting histone H4 acetylation. In turn, SOC1 represses a broad array of genes that mediate abiotic stress responses. We propose that during the transition from vegetative to reproductive growth, the MRG-SOC1 module constitutes a central hub in a mechanism that tunes down stress responses to enhance the reproductive success and plant fitness at the expense of costly efforts for adaptation to challenging environments.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Proteínas Cromossômicas não Histona/genética , Flores/crescimento & desenvolvimento , Proteínas de Domínio MADS/genética , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Proteínas Cromossômicas não Histona/metabolismo , Flores/genética , Proteínas de Domínio MADS/metabolismo , Estresse Fisiológico
9.
Cell Rep ; 35(11): 109263, 2021 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-34133931

RESUMO

The interplay between the phytohormone abscisic acid (ABA) and the gasotransmitter nitric oxide (NO) regulates seed germination and post-germinative seedling growth. We show that GAP1 (germination in ABA and cPTIO 1) encodes the transcription factor ANAC089 with a critical membrane-bound domain and extranuclear localization. ANAC089 mutants lacking the membrane-tethered domain display insensitivity to ABA, salt, and osmotic and cold stresses, revealing a repressor function. Whole-genome transcriptional profiling and DNA-binding specificity reveals that ANAC089 regulates ABA- and redox-related genes. ANAC089 truncated mutants exhibit higher NO and lower ROS and ABA endogenous levels, alongside an altered thiol and disulfide homeostasis. Consistently, translocation of ANAC089 to the nucleus is directed by changes in cellular redox status after treatments with NO scavengers and redox-related compounds. Our results reveal ANAC089 to be a master regulator modulating redox homeostasis and NO levels, able to repress ABA synthesis and signaling during Arabidopsis seed germination and abiotic stress.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Retroalimentação Fisiológica , Germinação , Sementes , Transdução de Sinais , Estresse Fisiológico , Ácido Abscísico/metabolismo , Arabidopsis/genética , Arabidopsis/fisiologia , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Sequência de Bases , Sítios de Ligação , Dissulfetos/metabolismo , DNA de Plantas/metabolismo , Regulação para Baixo/genética , Mutação com Ganho de Função/genética , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Germinação/genética , Óxido Nítrico/metabolismo , Oxirredução , Ligação Proteica , Sementes/genética , Sementes/crescimento & desenvolvimento , Frações Subcelulares/metabolismo , Compostos de Sulfidrila/metabolismo , Transcriptoma/genética , Regulação para Cima/genética
10.
Sci Adv ; 7(21)2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-34138745

RESUMO

Trimethylamine N-oxide (TMAO) is a well-known naturally occurring osmolyte in animals that counteracts the effect of different denaturants related to environmental stress and has recently been associated with severe human chronic diseases. In plants, however, the presence of TMAO has not yet been reported. In this study, we demonstrate that plants contain endogenous levels of TMAO, that it is synthesized by flavin-containing monooxygenases, and that its levels increase in response to abiotic stress conditions. In addition, our results reveal that TMAO operates as a protective osmolyte in plants, promoting appropriate protein folding and as an activator of abiotic stress-induced gene expression. Consistent with these functions, we show that TMAO enhances plant adaptation to low temperatures, drought, and high salt. We have thus uncovered a previously unidentified plant molecule that positively regulates abiotic stress tolerance.

11.
Plant Cell ; 33(7): 2431-2453, 2021 08 13.
Artigo em Inglês | MEDLINE | ID: mdl-33944955

RESUMO

Endoplasmic reticulum-plasma membrane contact sites (ER-PM CS) play fundamental roles in all eukaryotic cells. Arabidopsis thaliana mutants lacking the ER-PM protein tether synaptotagmin1 (SYT1) exhibit decreased PM integrity under multiple abiotic stresses, such as freezing, high salt, osmotic stress, and mechanical damage. Here, we show that, together with SYT1, the stress-induced SYT3 is an ER-PM tether that also functions in maintaining PM integrity. The ER-PM CS localization of SYT1 and SYT3 is dependent on PM phosphatidylinositol-4-phosphate and is regulated by abiotic stress. Lipidomic analysis revealed that cold stress increased the accumulation of diacylglycerol at the PM in a syt1/3 double mutant relative to wild-type while the levels of most glycerolipid species remain unchanged. In addition, the SYT1-green fluorescent protein fusion preferentially binds diacylglycerol in vivo with little affinity for polar glycerolipids. Our work uncovers a SYT-dependent mechanism of stress adaptation counteracting the detrimental accumulation of diacylglycerol at the PM produced during episodes of abiotic stress.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Membrana Celular/metabolismo , Diglicerídeos/metabolismo , Retículo Endoplasmático/metabolismo , Fosfatos de Fosfatidilinositol/metabolismo
12.
Methods Mol Biol ; 2156: 85-97, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32607977

RESUMO

Low temperature is an important determinant in the configuration of natural plant communities and defines the range of distribution and growth of important crops. Some plants, including Arabidopsis thaliana, have evolved sophisticated adaptive mechanisms to tolerate freezing temperatures. Central to this adaptation is the process of cold acclimation. By means of this process, many plants from temperate regions are able to develop or increase their freezing tolerance in response to low, nonfreezing temperatures. The identification and characterization of factors involved in freezing tolerance is crucial to understand the molecular mechanisms underlying the cold acclimation response and has a potential interest to improve crop tolerance to freezing temperatures. Many genes implicated in cold acclimation have been identified in numerous plant species by using molecular approaches followed by reverse genetic analysis. Remarkably, however, direct genetic analyses have not been conveniently exploited in their capacity for identifying genes with pivotal roles in that adaptive response. In this chapter, we describe a protocol for evaluating the freezing tolerance of both nonacclimated and cold acclimated Arabidopsis plants. This protocol allows for the accurate and simple screening of mutant collections for the identification of novel factors involved in freezing tolerance and cold acclimation.


Assuntos
Aclimatação/genética , Proteínas de Arabidopsis/genética , Arabidopsis/fisiologia , Congelamento , Mutação , Temperatura Baixa , Ambiente Controlado , Regulação da Expressão Gênica de Plantas , Mutagênese , Fenótipo , Melhoramento Vegetal , Desenvolvimento Vegetal/genética
13.
Nucleic Acids Res ; 48(11): 6280-6293, 2020 06 19.
Artigo em Inglês | MEDLINE | ID: mdl-32396196

RESUMO

Although originally identified as the components of the complex aiding the cytosolic chaperonin CCT in the folding of actins and tubulins in the cytosol, prefoldins (PFDs) are emerging as novel regulators influencing gene expression in the nucleus. Work conducted mainly in yeast and animals showed that PFDs act as transcriptional regulators and participate in the nuclear proteostasis. To investigate new functions of PFDs, we performed a co-expression analysis in Arabidopsis thaliana. Results revealed co-expression between PFD and the Sm-like (LSM) genes, which encode the LSM2-8 spliceosome core complex, in this model organism. Here, we show that PFDs interact with and are required to maintain adequate levels of the LSM2-8 complex. Our data indicate that levels of the LSM8 protein, which defines and confers the functional specificity of the complex, are reduced in pfd mutants and in response to the Hsp90 inhibitor geldanamycin. We provide biochemical evidence showing that LSM8 is a client of Hsp90 and that PFD4 mediates the interaction between both proteins. Consistent with our results and with the role of the LSM2-8 complex in splicing through the stabilization of the U6 snRNA, pfd mutants showed reduced levels of this snRNA and altered pre-mRNA splicing patterns.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Proteínas de Choque Térmico HSP90/metabolismo , Chaperonas Moleculares/metabolismo , Complexos Multiproteicos/metabolismo , Proteínas de Ligação a RNA/metabolismo , Spliceossomos/metabolismo , Arabidopsis/genética , Regulação da Expressão Gênica de Plantas , Complexos Multiproteicos/química , Mutação , Ligação Proteica , Splicing de RNA , Spliceossomos/química
14.
Front Plant Sci ; 10: 167, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30873189

RESUMO

It has long been assumed that the wide reprogramming of gene expression that modulates plant response to unfavorable environmental conditions is mainly controlled at the transcriptional level. A growing body of evidence, however, indicates that posttranscriptional regulatory mechanisms also play a relevant role in this control. Thus, the LSMs, a family of proteins involved in mRNA metabolism highly conserved in eukaryotes, have emerged as prominent regulators of plant tolerance to abiotic stress. Arabidopsis contains two main LSM ring-shaped heteroheptameric complexes, LSM1-7 and LSM2-8, with different subcellular localization and function. The LSM1-7 ring is part of the cytoplasmic decapping complex that regulates mRNA stability. On the other hand, the LSM2-8 complex accumulates in the nucleus to ensure appropriate levels of U6 snRNA and, therefore, correct pre-mRNA splicing. Recent studies reported unexpected results that led to a fundamental change in the assumed consideration that LSM complexes are mere components of the mRNA decapping and splicing cellular machineries. Indeed, these data have demonstrated that LSM1-7 and LSM2-8 rings operate in Arabidopsis by selecting specific RNA targets, depending on the environmental conditions. This specificity allows them to actively imposing particular gene expression patterns that fine-tune plant responses to abiotic stresses. In this review, we will summarize current and past knowledge on the role of LSM rings in modulating plant physiology, with special focus on their function in abiotic stress responses.

15.
J Exp Bot ; 70(12): 3283-3296, 2019 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-30869795

RESUMO

Plant tolerance to freezing temperatures is governed by endogenous components and environmental factors. Exposure to low non-freezing temperatures is a key factor in the induction of freezing tolerance in the process called cold acclimation. The role of nitric oxide (NO) in cold acclimation was explored in Arabidopsis using triple nia1nia2noa1-2 mutants that are impaired in the nitrate-dependent and nitrate-independent pathways of NO production, and are thus NO deficient. Here, we demonstrate that cold-induced NO accumulation is required to promote the full cold acclimation response through C-repeat Binding Factor (CBF)-dependent gene expression, as well as the CBF-independent expression of other cold-responsive genes such as Oxidation-Related Zinc Finger 2 (ZF/OZF2). NO deficiency also altered abscisic acid perception and signaling and the cold-induced production of anthocyanins, which are additional factors involved in cold acclimation.


Assuntos
Aclimatação , Arabidopsis/fisiologia , Temperatura Baixa , Óxido Nítrico/deficiência , Arabidopsis/genética , Mutação
16.
Plant Cell ; 31(2): 537-554, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30696706

RESUMO

The control of precursor-messenger RNA (pre-mRNA) splicing is emerging as an important layer of regulation in plant responses to endogenous and external cues. In eukaryotes, pre-mRNA splicing is governed by the activity of a large ribonucleoprotein machinery, the spliceosome, whose protein core is composed of the Sm ring and the related Sm-like 2-8 complex. Recently, the Arabidopsis (Arabidopsis thaliana) Sm-like 2-8 complex has been characterized. However, the role of plant Sm proteins in pre-mRNA splicing remains largely unknown. Here, we present the functional characterization of Sm protein E1 (SME1), an Arabidopsis homolog of the SME subunit of the eukaryotic Sm ring. Our results demonstrate that SME1 regulates the spliceosome activity and that this regulation is controlled by the environmental conditions. Indeed, depending on the conditions, SME1 ensures the efficiency of constitutive and alternative splicing of selected pre-mRNAs. Moreover, missplicing of most targeted pre-mRNAs leads to the generation of nonsense-mediated decay signatures, indicating that SME1 also guarantees adequate levels of the corresponding functional transcripts. In addition, we show that the selective function of SME1 in ensuring appropriate gene expression patterns through the regulation of specific pre-mRNA splicing is essential for adequate plant development and adaptation to freezing temperatures. These findings reveal that SME1 plays a critical role in plant development and interaction with the environment by providing spliceosome activity specificity.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Spliceossomos/metabolismo , Processamento Alternativo/genética , Processamento Alternativo/fisiologia , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Regulação da Expressão Gênica de Plantas/genética , Regulação da Expressão Gênica de Plantas/fisiologia , Precursores de RNA/genética , Precursores de RNA/metabolismo , Splicing de RNA/genética , Splicing de RNA/fisiologia , Spliceossomos/genética , Estresse Fisiológico/genética , Estresse Fisiológico/fisiologia
17.
Adv Exp Med Biol ; 1081: 3-22, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30288701

RESUMO

Under low nonfreezing temperature conditions, plants from temperate climates undergo physiological and biochemical adjustments that increase their tolerance to freezing temperatures. This response, termed cold acclimation, is largely regulated by changes in gene expression. Molecular and genetic studies have identified a small family of transcription factors, called C-repeat binding factors (CBFs), as key regulators of the transcriptomic rearrangement that leads to cold acclimation. The function of these proteins is tightly controlled, and an inadequate supply of CBF activity may be detrimental to the plant. Accumulated evidence has revealed an extremely intricate network of positive and negative regulators of cold acclimation that coalesce at the level of CBF promoters constituting a central hub where multiple internal and external signals are integrated. Moreover, CBF expression is also controlled at posttranscriptional and posttranslational levels further refining CBF regulation. Recently, natural variation studies in Arabidopsis have demonstrated that mutations resulting in changes in CBF expression have an adaptive value for wild populations. Intriguingly, CBF genes are also present in plant species that do not cold acclimate, which suggest that they may also have additional functions. For instance, CBFs are required for some cold-related abiotic stress responses. In addition, their involvement in plant development deserves further study. Although more studies are necessary to fully harness CBF biotechnological potential, these transcription factors are meant to be key for a rational design of crops with enhanced tolerance to abiotic stress.


Assuntos
Aclimatação/genética , Proteínas de Arabidopsis/genética , Arabidopsis/genética , Temperatura Baixa , Resposta ao Choque Frio/genética , Fatores de Ligação ao Core/genética , Redes Reguladoras de Genes , Genes de Plantas , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Fatores de Ligação ao Core/metabolismo , Regulação da Expressão Gênica de Plantas , Genótipo , Fenótipo , Regiões Promotoras Genéticas , Transdução de Sinais
18.
Nat Plants ; 4(10): 811-823, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30250280

RESUMO

NON-EXPRESSER OF PATHOGENESIS-RELATED GENES 1 (NPR1) is a master regulator of plant response to pathogens that confers immunity through a transcriptional cascade mediated by salicylic acid and TGA transcription factors. Little is known, however, about its implication in plant response to abiotic stress. Here, we provide genetic and molecular evidence supporting the fact that Arabidopsis NPR1 plays an essential role in cold acclimation by regulating cold-induced gene expression independently of salicylic acid and TGA factors. Our results demonstrate that, in response to low temperature, cytoplasmic NPR1 oligomers release monomers that translocate to the nucleus where they interact with heat shock transcription factor 1 (HSFA1) to promote the induction of HSFA1-regulated genes and cold acclimation. These findings unveil an unexpected function for NPR1 in plant response to low temperature, reveal a new regulatory pathway for cold acclimation mediated by NPR1 and HSFA1 factors, and place NPR1 as a central hub integrating cold and pathogen signalling for a better adaptation of plants to an ever-changing environment.


Assuntos
Proteínas de Arabidopsis/metabolismo , Aclimatação , Arabidopsis/metabolismo , Arabidopsis/fisiologia , Temperatura Baixa , Regulação da Expressão Gênica de Plantas , Fatores de Transcrição de Choque Térmico/metabolismo , Redes e Vias Metabólicas , Reguladores de Crescimento de Plantas/metabolismo , Ácido Salicílico/metabolismo , Fatores de Transcrição/metabolismo
19.
Proc Natl Acad Sci U S A ; 115(29): 7456-7458, 2018 07 17.
Artigo em Inglês | MEDLINE | ID: mdl-29970417
20.
Sci Rep ; 8(1): 9268, 2018 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-29915353

RESUMO

Plant tolerance to freezing temperatures is governed by endogenous constitutive components and environmental inducing factors. Nitric oxide (NO) is one of the endogenous components that participate in freezing tolerance regulation. A combined metabolomic and transcriptomic characterization of NO-deficient nia1,2noa1-2 mutant plants suggests that NO acts attenuating the production and accumulation of osmoprotective and regulatory metabolites, such as sugars and polyamines, stress-related hormones, such as ABA and jasmonates, and antioxidants, such as anthocyanins and flavonoids. Accordingly, NO-deficient plants are constitutively more freezing tolerant than wild type plants.


Assuntos
Adaptação Fisiológica , Antocianinas/metabolismo , Arabidopsis/fisiologia , Congelamento , Óxido Nítrico/metabolismo , Osmose , Reguladores de Crescimento de Plantas/metabolismo , Estresse Fisiológico , Ácido Abscísico/biossíntese , Antioxidantes/metabolismo , Ácido Ascórbico/metabolismo , Ciclopentanos/metabolismo , Regulação da Expressão Gênica de Plantas , Glutationa/metabolismo , Glicólise , Metaboloma , Modelos Biológicos , Mutação/genética , Oxilipinas/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Transcriptoma/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...