RESUMO
Arpin was discovered as an inhibitor of the Arp2/3 complex localized at the lamellipodial tip of fibroblasts, where it regulated migration steering. Recently, we showed that arpin stabilizes the epithelial barrier in an Arp2/3-dependent manner. However, the expression and functions of arpin in endothelial cells (EC) have not yet been described. Arpin mRNA and protein are expressed in EC and downregulated by pro-inflammatory cytokines. Arpin depletion in Human Umbilical Vein Endothelial Cells causes the formation of actomyosin stress fibers leading to increased permeability in an Arp2/3-independent manner. Instead, inhibitors of ROCK1 and ZIPK, kinases involved in the generation of stress fibers, normalize the loss-of-arpin effects on actin filaments and permeability. Arpin-deficient mice are viable but show a characteristic vascular phenotype in the lung including edema, microhemorrhage, and vascular congestion, increased F-actin levels, and vascular permeability. Our data show that, apart from being an Arp2/3 inhibitor, arpin is also a regulator of actomyosin contractility and endothelial barrier integrity.
Assuntos
Actomiosina , Permeabilidade Capilar , Células Endoteliais da Veia Umbilical Humana , Animais , Humanos , Actomiosina/metabolismo , Células Endoteliais da Veia Umbilical Humana/metabolismo , Camundongos , Serpinas/metabolismo , Serpinas/genética , Camundongos Knockout , Quinases Associadas a rho/metabolismo , Quinases Associadas a rho/genética , Complexo 2-3 de Proteínas Relacionadas à Actina/metabolismo , Complexo 2-3 de Proteínas Relacionadas à Actina/genética , Fibras de Estresse/metabolismo , Células Endoteliais/metabolismo , Proteínas de TransporteRESUMO
Introduction: The proteolytic activity of A Disintegrin and Metalloproteinase 17 (ADAM17) regulates the release of tumor necrosis factor (TNF) and TNF receptors (TNFRs) from cell surfaces. These molecules play important roles in tuberculosis (TB) shaping innate immune reactions and granuloma formation. Methods: Here, we investigated whether single nucleotide polymorphisms (SNPs) of ADAM17 influence TNF and TNFRs levels in 224 patients with active TB (ATB) and 118 healthy close contacts. Also, we looked for significant associations between SNPs of ADAM17 and ATB status. TNF, TNFR1, and TNFR2 levels were measured in plasma samples by ELISA. Four SNPs of ADAM17 (rs12692386, rs1524668, rs11684747, and rs55790676) were analyzed in DNA isolated from peripheral blood leucocytes. The association between ATB status, genotype, and cytokines was analyzed by multiple regression models. Results: Our results showed a higher frequency of rs11684747 and rs55790676 in close contacts than ATB patients. Coincidentally, heterozygous to these SNPs of ADAM17 showed higher plasma levels of TNF compared to homozygous to their respective ancestral alleles. Strikingly, the levels of TNF and TNFRs distinguished participant groups, with ATB patients displaying lower TNF and higher TNFR1/TNFR2 levels compared to their close contacts. Conclusion: These findings suggest a role for SNPs of ADAM17 in genetic susceptibility to ATB.
RESUMO
Multidrug resistance (MDR) commonly leads to cancer treatment failure because cancer cells often expel chemotherapeutic drugs using ATP-binding cassette (ABC) transporters, which reduce drug levels within the cells. This study investigated the clinical characteristics and single nucleotide variant (SNV) in ABCB1, ABCC1, ABCC2, ABCC4, and ABCG2, and their association with mortality in pediatric patients with central nervous system tumors (CNST). Using TaqMan probes, a real-time polymerase chain reaction genotyped 15 SNPs in 111 samples. Patients were followed up until death or the last follow-up day using the Cox proportional hazards model. An association was found between the rs1045642 (ABCB1) in the recessive model (HR = 2.433, 95% CI 1.098-5.392, p = 0.029), and the ICE scheme in the codominant model (HR = 9.810, 95% CI 2.74-35.06, p ≤ 0.001), dominant model (HR = 6.807, 95% CI 2.87-16.103, p ≤ 0.001), and recessive model (HR = 6.903, 95% CI 2.915-16.544, p = 0.038) significantly increased mortality in this cohort of patients. An association was also observed between the variant rs3114020 (ABCG2) and mortality in the codominant model (HR = 5.35, 95% CI 1.83-15.39, p = 0.002) and the dominant model (HR = 4.421, 95% CI 1.747-11.185, p = 0.002). A significant association between the ICE treatment schedule and increased mortality risk in the codominant model (HR = 6.351, 95% CI 1.831-22.02, p = 0.004, HR = 9.571, 95% CI 2.856-32.07, p ≤ 0.001), dominant model (HR = 6.592, 95% CI 2.669-16.280, p ≤ 0.001), and recessive model (HR = 5.798, 95% CI 2.411-13.940, p ≤ 0.001). The genetic variants rs3114020 in the ABCG2 gene and rs1045642 in the ABCB1 gene and the ICE chemotherapy schedule were associated with an increased mortality risk in this cohort of pediatric patients with CNST.
Assuntos
Neoplasias do Sistema Nervoso Central , Proteína 2 Associada à Farmacorresistência Múltipla , Polimorfismo de Nucleotídeo Único , Humanos , Masculino , Feminino , Criança , Pré-Escolar , Lactente , Neoplasias do Sistema Nervoso Central/genética , Neoplasias do Sistema Nervoso Central/mortalidade , Neoplasias do Sistema Nervoso Central/patologia , Estudos de Coortes , Adolescente , Proteínas Associadas à Resistência a Múltiplos Medicamentos/genética , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/genética , Marcadores Genéticos/genética , Proteínas de Neoplasias/genética , Subfamília B de Transportador de Cassetes de Ligação de ATP/genética , Biomarcadores Tumorais/genéticaRESUMO
BACKGROUND: Diabetic peripheral neuropathy (DPN) is the most common complication of type 2 diabetes mellitus (T2DM); its diagnosis and treatment are based on symptomatic improvement. However, as pharmacological therapy causes multiple adverse effects, the implementation of acupunctural techniques, such as electroacupuncture (EA) has been suggested as an alternative treatment. Nonetheless, there is a lack of scientific evidence, and its mechanisms are still unclear. We present the design and methodology of a new clinical randomized trial, that investigates the effectiveness of EA for the treatment of DPN. METHODS: This study is a four-armed, randomized, controlled, multicenter clinical trial (20-week intervention period, plus 12 weeks of follow-up after concluding intervention). A total of 48 T2DM patients with clinical signs and symptoms of DPN; and electrophysiological signs in the Nerve Conduction Study (NCS); will be treated by acupuncture specialists in outpatient units in Mexico City. Patients will be randomized in a 1:1 ratio to one of the following four groups: (a) short fibre DPN with EA, (b) short fibre DPN with sham EA, (c) axonal DPN with EA and (d) axonal DPN with sham EA treatment. The intervention will consist of 32 sessions, 20 min each, per patient over two cycles of intervention of 8 weeks each and a mid-term rest period of 4 weeks. The primary outcome will be NCS parameters, and secondary outcomes will include DPN-related symptoms and pain by Michigan Neuropathy Screening Instrument (MNSI), Michigan Diabetic Neuropathy Score (MDNS), Dolour Neuropatique Score (DN-4), Semmes-Westein monofilament, Numerical Rating Scale (NRS) for pain assessment, and the 36-item Short Form Health Survey (SF-36). To measure quality of life and improve oxidative stress, the inflammatory response; and genetic expression; will be analysed at the beginning and at the end of treatment. DISCUSSION: This study will be conducted to compare the efficacy of EA versus sham EA combined with conventional diabetic and neuropathic treatments if needed. EA may improve NCS, neuropathic pain and symptoms, oxidative stress, inflammatory response, and genetic expression, and it could be considered a potential coadjutant treatment for the management of DPN with a possible remyelinating effect. TRIAL REGISTRATION: ClinicalTrials.gov. NCT05521737 Registered on 30 August 2022. International Clinical Trials Registry Platform (ICTRP) ISRCTN97391213 Registered on 26 September 2022 [2b].
Assuntos
Terapia por Acupuntura , Diabetes Mellitus Tipo 2 , Neuropatias Diabéticas , Eletroacupuntura , Humanos , Neuropatias Diabéticas/terapia , Eletroacupuntura/métodos , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/terapia , Qualidade de Vida , Ensaios Clínicos Controlados Aleatórios como Assunto , Estudos Multicêntricos como AssuntoRESUMO
INTRODUCTION: Central nervous system (CNS) tuberculosis (TB) is the most severe form of TB due to its high mortality and functional sequelae. There are several differential diagnoses for TB; and, it can also cause secondary conditions, such as vasculitis. METHODOLOGY: 155 biopsies, corresponding to 155 different patients out of 5,386 registered biopsies from 2008-2013, met the criteria of unknown etiology vasculitis and evidence of cerebral vascular disease. These were analyzed to assess the presence of central nervous system TB. The selected cases were assessed with Suzaan Marais (SM) criteria for clinical tuberculosis. After that, Ziehl-Neelsen (ZN) staining and polymerase chain reaction (PCR) were performed to amplify a fragment of the insertion sequence IS6110 of M. tuberculosis. 21 patients met the criteria for definitive tuberculosis by ZN staining and PCR, and 2 met the criteria for possible tuberculosis. Tumor necrosis factor (TNF)-α, TNF-R1, and TNF-R2 were determined by immunohistochemistry in histological sections from formalin-fixed paraffin-embedded (FF-PE) tissues in the 23 selected patients. RESULTS: Granulomatous TB was present in almost half of the cases. TNF-R1 and TNF-R2 were expressed mainly in blood vessels, histiocytes, and macrophages. TNF-R2 expression was higher than the other markers, which suggests an anti-inflammatory response against M. tuberculosis. CONCLUSIONS: The histopathological presentation of TB is not always limited to granulomas, abscesses, or meningitis; there are also clinical presentations characterized only with chronic inflammation of nervous and vascular tissue.
Assuntos
Mycobacterium tuberculosis , Tuberculose , Vasculite , Humanos , Receptores Tipo I de Fatores de Necrose Tumoral , Receptores Tipo II do Fator de Necrose Tumoral , Tuberculose/diagnóstico , Fator de Necrose Tumoral alfa , Vasculite/complicaçõesRESUMO
Central nervous system (CNS) infections including meningitis and encephalitis, resulting from the blood-borne spread of specific microorganisms, provoke nervous tissue damage due to the inflammatory process. Moreover, different pathologies such as sepsis can generate systemic inflammation. Bacterial lipopolysaccharide (LPS) induces the release of inflammatory mediators and damage molecules, which are then released into the bloodstream and can interact with structures such as the CNS, thus modifying the blood-brain barrier's (BBB´s) and blood-cerebrospinal fluid barrier´s (BCSFB´s) function and inducing aseptic neuroinflammation. During neuroinflammation, the participation of glial cells (astrocytes, microglia, and oligodendrocytes) plays an important role. They release cytokines, chemokines, reactive oxygen species, nitrogen species, peptides, and even excitatory amino acids that lead to neuronal damage. The neurons undergo morphological and functional changes that could initiate functional alterations to neurodegenerative processes. The present work aims to explain these processes and the pathophysiological interactions involved in CNS damage in the absence of microbes or inflammatory cells.
Assuntos
Encefalite , Doenças Neuroinflamatórias , Humanos , Inflamação/metabolismo , Encefalite/patologia , Microglia/metabolismo , Neurônios/metabolismoRESUMO
Alzheimer's disease (AD) is the most common neurodegenerative disorder worldwide. Histopathologically, AD presents two pathognomonic hallmarks: (1) neurofibrillary tangles, characterized by intracellular deposits of hyperphosphorylated tau protein, and (2) extracellular amyloid deposits (amyloid plaques) in the brain vasculature (cerebral amyloid angiopathy; CAA). It has been proposed that vascular amyloid deposits could trigger neurovascular unit (NVU) dysfunction in AD. The NVU is composed primarily of astrocytic feet, endothelial cells, pericytes, and basement membrane. Although physical exercise is hypothesized to have beneficial effects against AD, it is unknown whether its positive effects extend to ameliorating CAA and improving the physiology of the NVU. We used the triple transgenic animal model for AD (3xTg-AD) at 13 months old and analyzed through behavioral and histological assays, the effect of voluntary physical exercise on cognitive functions, amyloid angiopathy, and the NVU. Our results show that 3xTg-AD mice develop vascular amyloid deposits which correlate with cognitive deficits and NVU alteration. Interestingly, the physical exercise regimen decreases amyloid angiopathy and correlates with an improvement in cognitive function as well as in the underlying integrity of the NVU components. Physical exercise could represent a key therapeutic approach in cerebral amyloid angiopathy and NVU stability in AD patients.
Assuntos
Doença de Alzheimer , Angiopatia Amiloide Cerebral , Camundongos , Animais , Doença de Alzheimer/metabolismo , Placa Amiloide/metabolismo , Células Endoteliais/metabolismo , Camundongos Transgênicos , Angiopatia Amiloide Cerebral/metabolismo , Encéfalo/metabolismo , Modelos Animais de Doenças , Peptídeos beta-Amiloides/metabolismoRESUMO
Parkinson's disease (PD) is the most common α-synucleinopathy worldwide. The pathognomonic hallmark of PD is the misfolding and propagation of the α-synuclein (α-syn) protein, observed in post-mortem histopathology. It has been hypothesized that α-synucleinopathy triggers oxidative stress, mitochondrial dysfunction, neuroinflammation, and synaptic dysfunction, leading to neurodegeneration. To this date, there are no disease-modifying drugs that generate neuroprotection against these neuropathological events and especially against α-synucleinopathy. Growing evidence suggests that peroxisome proliferator-activated receptor (PPAR) agonists confer neuroprotective effects in PD, however, whether they also confer an anti-α-synucleinopathy effect is unknown. Here we analyze the reported therapeutic effects of PPARs, specifically the gamma isoform (PPARγ), in preclinical PD animal models and clinical trials for PD, and we suggest possible anti-α-synucleinopathy mechanisms acting downstream from these receptors. Elucidating the neuroprotective mechanisms of PPARs through preclinical models that mimic PD as closely as possible will facilitate the execution of better clinical trials for disease-modifying drugs in PD.
Assuntos
Fármacos Neuroprotetores , Doença de Parkinson , Sinucleinopatias , Animais , Doença de Parkinson/metabolismo , Receptores Ativados por Proliferador de Peroxissomo , Fármacos Neuroprotetores/uso terapêutico , Neuroproteção , Modelos Animais de DoençasRESUMO
Tuberculosis (TB) of the central nervous system (CNS) presents high mortality due to brain damage and inflammation events. The formation and deposition of immune complexes (ICs) in the brain microvasculature during Mycobacterium tuberculosis (Mtb) infection are crucial for its pathobiology. The relevance of ICs to Mtb antigens in the pathogenesis of CNS-TB has been poorly explored. Here, we aimed to establish a murine experimental model of ICs-mediated brain vasculitis induced by cell wall antigens of Mtb. We administered a cell wall extract of the prototype pathogenic Mtb strain H37Rv to male BALB/c mice by subcutaneous and intravenous routes. Serum concentration and deposition of ICs onto blood vessels were determined by polyethylene glycol precipitation, ELISA, and immunofluorescence. Histopathological changes in the brain, lung, spleen, liver, and kidney were evaluated by hematoxylin and eosin staining. Our results evidenced that vasculitis developed in the studied tissues. High serum levels of ICs and vascular deposition were evident in the brain, lung, and kidneys early after the last cell wall antigen administration. Cell wall Mtb antigens induce strong type III hypersensitivity reactions and the development of systemic vasculitis with brain vascular changes and meningitis, supporting a role for ICs in the pathogenesis of TB.
Assuntos
Mycobacterium tuberculosis , Tuberculose , Vasculite , Masculino , Animais , Camundongos , Complexo Antígeno-Anticorpo , Modelos Animais de Doenças , Tuberculose/microbiologia , Antígenos de Bactérias , Parede CelularRESUMO
Tuberculosis (TB) of the central nervous system (CNS) is a lethal and incapacitating disease. Several studies have been performed to understand the mechanism of bacterial arrival to CNS, however, it remains unclear. Although the interaction of the host, the pathogen, and the environment trigger the course of the disease, in TB the characteristics of these factors seem to be more relevant in the genesis of the clinical features of each patient. We previously tested three mycobacterial clinical isolates with distinctive genotypes obtained from the cerebrospinal fluid of patients with meningeal TB and showed that these strains disseminated extensively to the brain after intratracheal inoculation and pulmonary infection in BALB/c mice. In this present study, BALB/c mice were infected through the intranasal route. One of these strains reaches the olfactory bulb at the early stage of the infection and infects the brain before the lungs, but the histological study of the nasal mucosa did not show any alteration. This observation suggests that some mycobacteria strains can arrive directly at the brain, apparently toward the olfactory nerve after infecting the nasal mucosa, and guides us to study in more detail during mycobacteria infection the nasal mucosa, the associated connective tissue, and nervous structures of the cribriform plate, which connect the nasal cavity with the olfactory bulb.
RESUMO
Hypoxia and hypoxia-inducible factors (HIFs) are essential in regulating several cellular processes, such as survival, differentiation, and the cell cycle; this adaptation is orchestrated in a complex way. In this review, we focused on the impact of hypoxia in the physiopathology of idiopathic pulmonary fibrosis (IPF) related to lung development, regeneration, and repair. There is robust evidence that the responses of HIF-1α and -2α differ; HIF-1α participates mainly in the acute phase of the response to hypoxia, and HIF-2α in the chronic phase. The analysis of their structure and of different studies showed a high specificity according to the tissue and the process involved. We propose that hypoxia-inducible transcription factor 2a (HIF-2α) is part of the persistent aberrant regeneration associated with developing IPF.
Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos , Fibrose Pulmonar Idiopática , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Diferenciação Celular , Hipóxia Celular , Humanos , HipóxiaRESUMO
The α-synucleinopathies constitute a subset of neurodegenerative disorders, of which Parkinson's disease (PD) is the most common worldwide, characterized by the accumulation of misfolded α-synuclein in the cytoplasm of neurons, which spreads in a prion-like manner to anatomically interconnected brain areas. However, it is not clear how α-synucleinopathy triggers neurodegeneration. We recently developed a rat model through a single intranigral administration of the neurotoxic ß-sitosterol ß-D-glucoside (BSSG), which produces α-synucleinopathy. In this model, we aimed to evaluate the temporal pattern of levels in oxidative and nitrosative stress and mitochondrial complex I (CI) dysfunction and how these biochemical parameters are associated with neurodegeneration in different brain areas with α-synucleinopathy (Substantia nigra pars compacta, the striatum, in the hippocampus and the olfactory bulb, where α-syn aggregation spreads). Interestingly, an increase in oxidative stress and mitochondrial CI dysfunction accompanied neurodegeneration in those brain regions. Furthermore, in silico analysis suggests a high-affinity binding site for BSSG with peroxisome proliferator-activated receptors (PPAR) alpha (PPAR-α) and gamma (PPAR-γ). These findings will contribute to elucidating the pathophysiological mechanisms associated with α-synucleinopathies and lead to the identification of new early biomarkers and therapeutic targets.
Assuntos
Encéfalo , Complexo I de Transporte de Elétrons , Mitocôndrias , Estresse Oxidativo , Sinucleinopatias , alfa-Sinucleína , Animais , Encéfalo/metabolismo , Encéfalo/fisiopatologia , Modelos Animais de Doenças , Complexo I de Transporte de Elétrons/metabolismo , Mitocôndrias/metabolismo , Estresse Nitrosativo , Receptores Ativados por Proliferador de Peroxissomo/metabolismo , Ratos , Sinucleinopatias/metabolismo , Sinucleinopatias/fisiopatologia , alfa-Sinucleína/química , alfa-Sinucleína/metabolismoRESUMO
The SARS-CoV-2 pandemic has confirmed the apocalyptic predictions that virologists have been making for several decades. The challenge the world is facing is that of trying to find a possible treatment, and a viable and expedient option for addressing this challenge is the repurposing of drugs. However, in some cases, although these drugs are approved for use in humans, the mechanisms of action involved are unknown. In this sense, to justify its therapeutic application to a new disease, it is ideal, but not necessary, to know the basic mechanisms of action involved in a drug's biological effects. This review compiled the available information regarding the various effects attributed to Ivermectin. The controversy over its use for the treatment of COVID-19 is demonstrated by this report that considers the proposal unfeasible because the therapeutic doses proposed to achieve this effect cannot be achieved. However, due to the urgent need to find a treatment, an exhaustive and impartial review is necessary in order to integrate the knowledge that exists, to date, of the possible mechanisms through which the treatment may be helpful in defining safe doses and schedules of Ivermectin.
RESUMO
Central nervous system (CNS) tuberculosis is the most lethal and devastating form among the diseases caused by Mycobacterium tuberculosis. The mechanisms by which M. tuberculosis bacilli enter the CNS are still unclear. However, the BBB and the BCSFB have been proposed as possible routes of access into the brain. We previously reported that certain strains of M. tuberculosis possess an enhanced ability to cause secondary CNS infection in a mouse model of progressive pulmonary tuberculosis. Here, we evaluated the morphostructural and molecular integrity of CNS barriers. For this purpose, we analyzed through transmission electron microscopy the ultrastructure of brain parenchymal microvessels and choroid plexus epithelium from animals infected with two mycobacterial strains. Additionally, we determined the expression of junctional proteins and cytokines by immunological techniques. The results showed that the presence of M. tuberculosis induced disruption of the BCSFB but no disruption of the BBB, and that the severity of such damage was related to the strain used, suggesting that variations in the ability to cause CNS disease among distinct strains of bacteria may also be linked to their capacity to cause direct or indirect disruption of these barriers. Understanding the pathophysiological mechanisms involved in CNS tuberculosis may facilitate the establishment of new biomarkers and therapeutic targets.
Assuntos
Doenças do Sistema Nervoso Central , Tuberculose Meníngea , Animais , Barreira Hematoencefálica/metabolismo , Encéfalo , Doenças do Sistema Nervoso Central/metabolismo , Epitélio , CamundongosRESUMO
Sepsis is a systemic infection that can lead to multi-organ failure. It is characterised by an uncontrolled immune response with massive neutrophil influx into peripheral organs. Neutrophil extravasation into tissues depends on actin remodeling and actin-binding proteins such as cortactin, which is expressed ubiquitously, except for neutrophils. Endothelial cortactin is necessary for proper regulation of neutrophil transendothelial migration and recruitment to sites of infection. We therefore hypothesised that cortactin plays a crucial role in sepsis development by regulating neutrophil trafficking. Using a murine model of sepsis induced by cecal ligation and puncture (CLP), we showed that cortactin-deficient (KO) mice survive better due to reduced lung injury. Histopathological analysis of lungs from septic KO mice revealed absence of oedema, reduced vascular congestion and mucus deposition, and better-preserved alveoli compared to septic wild-type (WT) mice. Additionally, sepsis-induced cytokine storm, excessive neutrophil infiltration into the lung and oxidative stress were significantly reduced in KO mice. Neutrophil depletion 12 h after sepsis improved survival in WT mice by averting lung injury, similar to both neutrophil-depleted and non-depleted KO mice. Our findings highlight a critical role of cortactin for lung neutrophil infiltration and sepsis severity.
RESUMO
Severe coronavirus disease 2019 (COVID-19) is characterized by lung injury, cytokine storm, and increased neutrophil-to-lymphocyte ratio (NLR). Current therapies focus on reducing viral replication and inflammatory responses, but no specific treatment exists to prevent the development of severe COVID-19 in infected individuals. Angiotensin-converting enzyme-2 (ACE2) is the receptor for SARS-CoV-2, the virus causing COVID-19, but it is also critical for maintaining the correct functionality of lung epithelium and endothelium. Coronaviruses induce activation of a disintegrin and metalloprotease 17 (ADAM17) and shedding of ACE2 from the cell surface resulting in exacerbated inflammatory responses. Thus, we hypothesized that ADAM17 inhibition ameliorates COVID-19-related lung inflammation. We employed a preclinical mouse model using intratracheal instillation of a combination of polyinosinic:polycytidylic acid (poly(I:C)) and the receptor-binding domain of the SARS-CoV-2 spike protein (RBD-S) to mimic lung damage associated with COVID-19. Histologic analysis of inflamed mice confirmed the expected signs of lung injury including edema, fibrosis, vascular congestion, and leukocyte infiltration. Moreover, inflamed mice also showed an increased NLR as observed in critically ill COVID-19 patients. Administration of the ADAM17/MMP inhibitors apratastat and TMI-1 significantly improved lung histology and prevented leukocyte infiltration. Reduced leukocyte recruitment could be explained by reduced production of proinflammatory cytokines and lower levels of the endothelial adhesion molecules ICAM-1 and VCAM-1. Additionally, the NLR was significantly reduced by ADAM17/MMP inhibition. Thus, we propose inhibition of ADAM17/MMP as a novel promising treatment strategy in SARS-CoV-2-infected individuals to prevent the progression toward severe COVID-19.
Assuntos
Tratamento Farmacológico da COVID-19 , Lesão Pulmonar , Proteína ADAM17 , Enzima de Conversão de Angiotensina 2 , Animais , Modelos Animais de Doenças , Humanos , Lesão Pulmonar/etiologia , Lesão Pulmonar/prevenção & controle , Metaloproteinases da Matriz , Camundongos , SARS-CoV-2 , Glicoproteína da Espícula de CoronavírusRESUMO
BACKGROUND: Changes in neutrophil to lymphocyte ratio (ΔNLR) have been used as a clinical tool for stratification and prognosis of patients with solid tumors, there is scarce evidence of their clinical relevance in patients with tumors of the central nervous system who have also undergone surgical resection. OBJECTIVE: Determine if (ΔNLR) are associated with poor response to treatment and worse prognosis in pediatric patients with central nervous system tumors (CNST) who underwent surgical resection. METHODS: We performed a retrospective cohort study; demographic, clinical, and hematological variables were evaluated, Kaplan-Meier survival curves and Cox proportional hazards regression model were performed to evaluate prognosis. RESULTS: The ΔNLR cutoff value obtained through the third interquartile range was 4.30; The probability of survival and complete response to treatment was different between patients with high ΔNLR when compared to patients with low ΔNLR (p= 0.013, p=⪠0.001, respectively). A high ΔNLR behaved as an independent predictor of worse Overall Survival (HR 2,297; 95% CI: 1,075-4.908, p= 0.032). CONCLUSION: An elevated ΔNLR was a predictor of poor response to treatment and a prognostic factor for worse Overall Survival in pediatric patients with CNST undergoing surgical resection.
Assuntos
Neoplasias do Sistema Nervoso Central , Neutrófilos , Neoplasias do Sistema Nervoso Central/cirurgia , Criança , Humanos , Estimativa de Kaplan-Meier , Linfócitos/patologia , Neutrófilos/patologia , Prognóstico , Estudos RetrospectivosRESUMO
Pulmonary hypertension is a rare condition that impairs patients' quality of life and life expectancy. The development of noninvasive instruments may help elucidate the prognosis of this cardiorespiratory disease. We aimed to evaluate the utility of routinely performed noninvasive test results as prognostic markers in patients with pulmonary hypertension. We enrolled 198 patients with mean pulmonary artery pressure >25 mmHg measured at cardiac catheterisation or echocardiographic pulmonary artery systolic pressure > 40 mmHg and tricuspid regurgitation Vmax >2.9 m/s, and clinical information regarding management and follow-up studies from the date of diagnosis. Multivariate analysis revealed that female sex [HR: 0.21, (95% CI: 0.07-0.64); p = 0.006], the presence of collagenopathies [HR: 8.63, (95% CI: 2.38-31.32); p = 0.001], an increased red blood cell distribution width [HR: 1.25, (95% CI: 1.04-1.49); p = 0.017] and an increased electrocardiographic P axis (P°)/T axis (T°) ratio [HR: 0.93, (95% CI: 0.88-0.98); p = 0.009] were severity-associated factors, while older age [HR: 1.57, (95% CI: 1.04-1.28); p = 0.006], an increased QRS axis (QRS°)/T° ratio [HR: 1.21, (95% CI: 1.09-1.34); p < 0.001], forced expiratory volume in 1 s [HR: 0.94, (95% CI: 0.91-0.98); p = 0.01] and haematocrit [HR: 0.93, (95% CI: 0.87-0.99); p = 0.04] were mortality-associated factors. Our results support the importance of red blood cell distribution width, electrocardiographic ratios and collagenopathies for assessing pulmonary hypertension prognosis.
RESUMO
Our work evaluated cardiac function and mitochondrial bioenergetics parameters in hearts from male Wistar rats subjected to the UUO model during 28 days of progression. We measured markers of kidney damage and inflammation in plasma and renal fibrosis by histological analysis and Western blot. Cardiac function was evaluated by echocardiography and proteins involved in cardiac damage by Western blot. Oxygen consumption and transmembrane potential were monitored in cardiac mitochondria using high-resolution respirometry. We also determined the activity of ATP synthase and antioxidant enzymes such as glutathione peroxidase, glutathione reductase, and catalase. Our results show that, although renal dysfunction is established in animals subjected to ureteral obstruction, cardiac function is maintained along with mitochondrial function and antioxidant enzymes activity after 28 days of injury evolution. Our results suggest that renocardiac syndrome might develop but belatedly in obstruction-induced renal damage, opening the opportunity for treatment to prevent this condition.