Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 12(1): 933, 2022 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-35042922

RESUMO

Combining single cell experiments, population dynamics and theoretical methods of membrane mechanics, we put forward that the rate of cell proliferation in E. coli colonies can be regulated by modifiers of the mechanical properties of the bacterial membrane. Bacterial proliferation was modelled as mediated by cell division through a membrane constriction divisome based on FtsZ, a mechanically competent protein at elastic interaction against membrane rigidity. Using membrane fluctuation spectroscopy in the single cells, we revealed either membrane stiffening when considering hydrophobic long chain fatty substances, or membrane softening if short-chained hydrophilic molecules are used. Membrane stiffeners caused hindered growth under normal division in the microbial cultures, as expected for membrane rigidification. Membrane softeners, however, altered regular cell division causing persistent microbes that abnormally grow as long filamentous cells proliferating apparently faster. We invoke the concept of effective growth rate under the assumption of a heterogeneous population structure composed by distinguishable individuals with different FtsZ-content leading the possible forms of cell proliferation, from regular division in two normal daughters to continuous growing filamentation and budding. The results settle altogether into a master plot that captures a universal scaling between membrane rigidity and the divisional instability mediated by FtsZ at the onset of membrane constriction.


Assuntos
Membrana Celular/metabolismo , Proliferação de Células/fisiologia , Escherichia coli/crescimento & desenvolvimento , Proteínas de Bactérias/metabolismo , Proteínas de Ciclo Celular/metabolismo , Divisão Celular/genética , Divisão Celular/fisiologia , Membrana Celular/fisiologia , Proteínas do Citoesqueleto/metabolismo , Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo , Proteínas de Membrana/metabolismo , Membranas/metabolismo
2.
Colloids Surf B Biointerfaces ; 203: 111763, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33865091

RESUMO

Rapid diagnosis provides better clinical management of patients, helps control possible outbreaks, and increases survival. The study of deposits produced by the evaporation of droplets is a useful tool in the diagnosis of some health problems. With the aim to improve diagnostic time in clinical practice where we use the evaporation of droplets, we explored the effects of substrate temperature on pattern formation of dried droplets in globular protein solutions. Three deposit groups were observed: "functional" patterns (from 25 to 37 ∘C), "transition" patterns (from 44 to 50 ∘C), and "eye" patterns (from 58 to 63 ∘C). The dried droplets of the first two groups show a ring structure ("coffee-ring") that confines a great diversity of aggregates such as needle-like structures, tiny blade-shape crystals, highly symmetrical crystallization patterns, and amorphous salt aggregates. In contrast, the "eye" patterns are deposits with a large inner aggregate surrounded by a coffee ring, and they can appear from the evaporation of droplets in protein binary mixtures and blood serum. Interestingly, the unfolding proteins correlates with the formation of "eye" patterns. We measured stain diameter, "coffee-ring" thickness, radial density profile, and entropy computed by GLCM-statistics to quantify the structural differences among deposit groups. We found that "functional" patterns are structurally indistinguishable among them, but they are clearly different from elements of the other deposit groups. An exponential decay function describes pattern formation time as a function of substrate temperature, which is independent from protein concentration. Patterns formation at 32 ∘C takes place up to 63% less time and preserves the structural characteristics of dried droplets in proteins formed at room temperature. Therefore, we argue that droplet evaporation at this substrate temperature could be an excellent candidate to make a more efficient diagnosis based on droplet evaporation of biofluids.


Assuntos
Proteínas , Cloreto de Sódio , Humanos , Temperatura
3.
Commun Biol ; 2: 225, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31240263

RESUMO

Cardiolipin is a cone-shaped lipid predominantly localized in curved membrane sites of bacteria and in the mitochondrial cristae. This specific localization has been argued to be geometry-driven, since the CL's conical shape relaxes curvature frustration. Although previous evidence suggests a coupling between CL concentration and membrane shape in vivo, no precise experimental data are available for curvature-based CL sorting in vitro. Here, we test this hypothesis in experiments that isolate the effects of membrane curvature in lipid-bilayer nanotubes. CL sorting is observed with increasing tube curvature, reaching a maximum at optimal CL concentrations, a fact compatible with self-associative clustering. Observations are compatible with a model of membrane elasticity including van der Waals entropy, from which a negative intrinsic curvature of -1.1 nm-1 is predicted for CL. The results contribute to understanding the physicochemical interplay between membrane curvature and composition, providing key insights into mitochondrial and bacterial membrane organization and dynamics.


Assuntos
Cardiolipinas/metabolismo , Bicamadas Lipídicas/metabolismo , Animais , Bactérias , Elasticidade , Membranas Mitocondriais , Modelos Teóricos , Nanotubos , Fosfatidilcolinas/metabolismo , Propriedades de Superfície , Lipossomas Unilamelares/metabolismo
4.
PLoS One ; 10(10): e0140882, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26480032

RESUMO

High hydrostatic pressure (HHP) affects the structure, metabolism and survival of micro-organisms including bacteria. For this reason HHP is a promising treatment in the food industry. The aim of this work is to evaluate the effect of high pressure, under isochoric cooling conditions, on Escherichia coli, where such high pressure develops due to the fact water cannot expand. We combine survival curves obtained by spectrophotometry and images of atomic force microscopy in this study. Our results show that cooling at -20 and -30°C leads to a partial destruction of a Escherichia coli population. However, cooling at -15°C causes a total extermination of bacteria. This intriguing result is explained by the phase diagram of water. In the first case, the simultaneous formation of ice III and ice Ih crystals provides a safe environment for bacteria. In the second case (-15°C) Escherichia coli remains in a metastable and amorphous free-of-crystals liquid subjected to high pressure. Our work is the first experimental study carried out to inactivate Escherichia coli under isochoric cooling conditions. Unlike HHP, which is based on the application of an external load to augment the pressure, this technique only requires cooling. The method could be used for annihilation of other Escherichia coli strains and perhaps other micro-organisms.


Assuntos
Escherichia coli/fisiologia , Esterilização/métodos , Temperatura , Microbiologia de Alimentos , Pressão Hidrostática , Microscopia de Força Atômica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...