Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Appl Physiol (1985) ; 135(3): 655-672, 2023 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-37535708

RESUMO

Cancer cachexia is clinically defined by involuntary weight loss >5% in <6 mo, primarily affecting skeletal muscle. Here, we aimed to identify sex differences in the onset of colorectal cancer cachexia with specific consideration to skeletal muscle contractile and metabolic functions. Eight-weeks old BALB/c mice (69 males, 59 females) received subcutaneous C26 allografts or PBS vehicle. Tumors were developed for 10-, 15-, 20-, or 25 days. Muscles and organs were collected, in vivo muscle contractility, protein synthesis rate, mitochondrial function, and protein turnover markers were assessed. One-way ANOVA within sex and trend analysis between sexes were performed, P < 0.05. Gastrocnemius and tibialis anterior (TA) muscles became atrophic in male mice at 25 days, whereas female mice exhibited no significant differences in muscle weights at endpoints despite presenting hallmarks of cancer cachexia (fat loss, hepatosplenomegaly). We observed lowered muscle contractility and protein synthesis concomitantly to muscle mass decay in males, with higher proteolytic markers in muscles of both sexes. mRNA of Opa1 was lower in TA, whereas Bnip3 was higher in gastrocnemius after 25 days in male mice, with no significant effect in female mice. Our data suggest relative protections to skeletal muscle in females compared with males despite other canonical signs of cancer cachexia and increased protein degradation markers; suggesting we should place onus upon nonmuscle tissues during early stages of cancer cachexia in females. We noted potential protective mechanisms relating to skeletal muscle contractile and mitochondrial functions. Our findings underline possible heterogeneity in onset of cancer cachexia between biological sexes, suggesting the need for sex-specific approaches to treat cancer cachexia.NEW & NOTEWORTHY Our study demonstrates biological-sex differences in phenotypic characteristics of cancer cachexia between male and female mice, whereby females display many common characteristics of cachexia (gonadal fat loss and hepatosplenomegaly), protein synthesis markers alterations, and common catabolic markers in skeletal muscle despite relatively preserved muscle mass in early-stage cachexia compared with males. Mechanisms of cancer cachexia appear to differ between sexes. Data suggest need to place onus of early cancer cachexia detection and treatment on nonmuscle tissues in females.


Assuntos
Caquexia , Neoplasias , Feminino , Masculino , Animais , Camundongos , Caquexia/metabolismo , Neoplasias/complicações , Neoplasias/patologia , Músculo Esquelético/metabolismo , Redução de Peso , Mitocôndrias/metabolismo , Atrofia Muscular/metabolismo
2.
Am J Physiol Endocrinol Metab ; 322(3): E278-E292, 2022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-35068192

RESUMO

microRNAs (miRs) are linked to various human diseases including type 2 diabetes mellitus (T2DM) and emerging evidence suggests that miRs may serve as potential therapeutic targets. Lower miR-16 content is consistent across different models of T2DM; however, the role of miR-16 in muscle metabolic health is still elusive. Therefore, the purpose of this study was to investigate how deletion of miR-16 in mice affects skeletal muscle metabolic health and contractile function in both sexes. This study was conducted using both 1) in vitro and 2) in vivo experiments. In in vitro experiments, we used C2C12 myoblasts to test if inhibition or overexpression of miR-16 affected insulin-mediated glucose handling. In in vivo experiments, we generated muscle-specific miR-16 knockout (KO) mice fed a high-fat diet (HFD) to assess how miR-16 content impacts metabolic and contractile properties including glucose tolerance, insulin sensitivity, muscle contractile function, protein anabolism, and mitochondrial network health. In in vitro experiments, although inhibition of miR-16 induced impaired insulin signaling (P = 0.002) and glucose uptake (P = 0.014), overexpression of miR-16 did not attenuate lipid overload-induced insulin resistance using the diacylglycerol analog 1-oleoyl-2-acetyl-sn-glycerol. In in vivo experiments, miR-16 deletion induced both impaired muscle contractility (P = 0.031-0.033), and mitochondrial network health (P = 0.008-0.018) in both sexes. However, although males specifically exhibited impaired insulin sensitivity following miR-16 deletion (P = 0.030), female KO mice showed pronounced glucose intolerance (P = 0.046), corresponding with lower muscle weights (P = 0.015), and protein hyperanabolism (P = 0.023). Our findings suggest distinct sex differences in muscle adaptation in response to miR-16 deletion and miR-16 may serve as a key regulator for metabolic dysregulation in T2DM.NEW & NOTEWORTHY We set to investigate the role of miR-16 in skeletal muscle during diet-induced insulin resistance. Our data provide novel evidence that the lack of miR-16 induced multiple aberrations in insulin sensitivity, muscle contractility, mitochondrial network health, and protein turnover in a sex-dependent manner. Interestingly, miR-16 deletion leads to insulin resistance in males and exacerbated glucose intolerance in females, suggesting different mechanisms of metabolic dysregulation with a lack of miR-16 between sexes.


Assuntos
Diabetes Mellitus Tipo 2 , Intolerância à Glucose , Resistência à Insulina , MicroRNAs , Animais , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/metabolismo , Dieta Hiperlipídica , Feminino , Glucose/metabolismo , Intolerância à Glucose/genética , Intolerância à Glucose/metabolismo , Insulina/metabolismo , Resistência à Insulina/genética , Masculino , Camundongos , Camundongos Knockout , MicroRNAs/genética , MicroRNAs/metabolismo , Músculo Esquelético/metabolismo
3.
J Appl Physiol (1985) ; 132(1): 58-72, 2022 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-34762526

RESUMO

Cancer cachexia (CC) results in impaired muscle function and quality of life and is the primary cause of death for ∼20%-30% of patients with cancer. We demonstrated mitochondrial degeneration as a precursor to CC in male mice; however, whether such alterations occur in females is currently unknown. The purpose of this study was to elucidate muscle alterations in CC development in female tumor-bearing mice. Sixty female C57BL/6J mice were injected with PBS or Lewis lung carcinoma at 8 wk of age, and tumors developed for 1, 2, 3, or 4 wk to assess the time course of cachectic development. In vivo muscle contractile function, protein fractional synthetic rate (FSR), protein turnover, and mitochondrial health were assessed. Three- and four-week tumor-bearing mice displayed a dichotomy in tumor growth and were reassigned to high tumor (HT) and low tumor (LT) groups. HT mice exhibited lower soleus, tibialis anterior, and fat weights than PBS mice. HT mice showed lower peak isometric torque and slower one-half relaxation time than PBS mice. HT mice had lower FSR than PBS mice, whereas E3 ubiquitin ligases were greater in HT than in other groups. Bnip3 (mitophagy) and pMitoTimer red puncta (mitochondrial degeneration) were greater in HT mice, whereas Pgc1α1 and Tfam (mitochondrial biogenesis) were lower in HT mice than in PBS mice. We demonstrate alterations in female tumor-bearing mice where HT exhibited greater protein degradation, impaired muscle contractility, and mitochondrial degeneration compared with other groups. Our data provide novel evidence for a distinct cachectic development in tumor-bearing female mice compared with previous male studies.NEW & NOTEWORTHY Our study demonstrates divergent tumor development and tissue wasting within 3- and 4-wk mice, where approximately half the mice developed large tumors and subsequent cachexia. Unlike previous male studies, where metabolic perturbations precede the onset of cachexia, females appear to exhibit protections from the metabolic perturbations and cachexia development. Our data provide novel evidence for divergent cachectic development in tumor-bearing female mice compared with previous male CC studies, suggesting different mechanisms of CC between sexes.


Assuntos
Caquexia , Neoplasias , Animais , Caquexia/etiologia , Caquexia/patologia , Feminino , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Músculo Esquelético/patologia , Atrofia Muscular/etiologia , Atrofia Muscular/patologia , Neoplasias/patologia , Qualidade de Vida
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...