Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 90
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 121(19): e2318003121, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38691588

RESUMO

Peptides presented by HLA-E, a molecule with very limited polymorphism, represent attractive targets for T cell receptor (TCR)-based immunotherapies to circumvent the limitations imposed by the high polymorphism of classical HLA genes in the human population. Here, we describe a TCR-based bispecific molecule that potently and selectively binds HLA-E in complex with a peptide encoded by the inhA gene of Mycobacterium tuberculosis (Mtb), the causative agent of tuberculosis in humans. We reveal the biophysical and structural bases underpinning the potency and specificity of this molecule and demonstrate its ability to redirect polyclonal T cells to target HLA-E-expressing cells transduced with mycobacterial inhA as well as primary cells infected with virulent Mtb. Additionally, we demonstrate elimination of Mtb-infected cells and reduction of intracellular Mtb growth. Our study suggests an approach to enhance host T cell immunity against Mtb and provides proof of principle for an innovative TCR-based therapeutic strategy overcoming HLA polymorphism and therefore applicable to a broader patient population.


Assuntos
Antígenos de Histocompatibilidade Classe I , Mycobacterium tuberculosis , Receptores de Antígenos de Linfócitos T , Linfócitos T , Mycobacterium tuberculosis/imunologia , Humanos , Receptores de Antígenos de Linfócitos T/imunologia , Receptores de Antígenos de Linfócitos T/metabolismo , Antígenos de Histocompatibilidade Classe I/imunologia , Antígenos de Histocompatibilidade Classe I/metabolismo , Linfócitos T/imunologia , Antígenos HLA-E , Proteínas de Bactérias/imunologia , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Tuberculose/imunologia
2.
Cell Rep ; 43(4): 113995, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38527061

RESUMO

The tumor microenvironment (TME) is restricted in metabolic nutrients including the semi-essential amino acid arginine. While complete arginine deprivation causes T cell dysfunction, it remains unclear how arginine levels fluctuate in the TME to shape T cell fates. Here, we find that the 20-µM low arginine condition, representing the levels found in the plasma of patients with cancers, confers Treg-like immunosuppressive capacities upon activated T cells. In vivo mouse tumor models and human single-cell RNA-sequencing datasets reveal positive correlations between low arginine condition and intratumoral Treg accumulation. Mechanistically, low arginine-activated T cells engage in metabolic and transcriptional reprogramming, using the ATF4-SLC7A11-GSH axis, to preserve their suppressive function. These findings improve our understanding of the role of arginine in human T cell biology with potential applications for immunotherapy strategies.


Assuntos
Fator 4 Ativador da Transcrição , Arginina , Linfócitos T CD4-Positivos , Arginina/metabolismo , Fator 4 Ativador da Transcrição/metabolismo , Animais , Humanos , Camundongos , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/metabolismo , Ativação Linfocitária/imunologia , Camundongos Endogâmicos C57BL , Sistema y+ de Transporte de Aminoácidos/metabolismo , Sistema y+ de Transporte de Aminoácidos/genética , Microambiente Tumoral/imunologia , Linfócitos T Reguladores/imunologia , Linfócitos T Reguladores/metabolismo , Feminino , Sistemas de Transporte de Aminoácidos Básicos/metabolismo , Sistemas de Transporte de Aminoácidos Básicos/genética
3.
BJUI Compass ; 4(3): 322-330, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37025470

RESUMO

Objectives: This study aimed to investigate the anti-PD-1 inhibitor pembrolizumab as a potential agent for use in non-muscle-invasive bladder cancer (NMIBC) by conducting a Phase 1 safety run-in study to assess the safety and tolerability of intravesical pembrolizumab after transurethral resection of the bladder tumour (TURBT). Patients and methods: Eligible patients had recurrent NMIBC for which adjuvant treatment post TURBT was a reasonable treatment option, Eastern Cooperative Oncology Group Performance Status (ECOG PS) 0-1 and adequate end-organ function. Pembrolizumab was administered by intravesical instillation once weekly for a total of six doses. Intra-patient dose escalation was performed in three paired patient cohorts with doses starting at 50 mg and increasing through 100 mg to a maximum of 200 mg. Adverse events (AEs) were assessed using Common Terminology Criteria for Adverse Events (CTCAE) v4.03 with dose limiting toxicity (DLT) defined as a clinically significant, drug-related, Grade 4 haematological or Grade 3 or higher non-haematological toxicity occurring within 7 days of administration of the first treatment at a given dose for that patient. Results: Six patients were treated with no DLTs seen during dose escalation. Drug-related AEs were of low grade and included dysuria and fatigue. All patients completed six doses of treatment as planned. Pharmacokinetic and pharmacodynamic assays did not detect any pembrolizumab in the serum following repeated intravesical administration, and no changes in peripheral immune cell populations were observed. Conclusions: Administration of intravesical pembrolizumab was well tolerated and did not raise any safety concerns in patients with NMIBC following TURBT. There was no evidence of systemic absorption or systemic immune effects following intravesical administration. Further studies are required to assess whether intravesical administration has anti-tumour activity.

4.
JCI Insight ; 8(9)2023 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-36976644

RESUMO

Invariant natural killer T (iNKT) cells act at the interface between lipid metabolism and immunity because of their restriction to lipid antigens presented on CD1d by antigen-presenting cells (APCs). How foreign lipid antigens are delivered to APCs remains elusive. Since lipoproteins routinely bind glycosylceramides structurally similar to lipid antigens, we hypothesized that circulating lipoproteins form complexes with foreign lipid antigens. In this study, we used 2-color fluorescence correlation spectroscopy to show, for the first time to our knowledge, stable complex formation of lipid antigens α-galactosylceramide (αGalCer), isoglobotrihexosylceramide, and OCH, a sphingosine-truncated analog of αGalCer, with VLDL and/or LDL in vitro and in vivo. We demonstrate LDL receptor-mediated (LDLR-mediated) uptake of lipoprotein-αGalCer complexes by APCs, leading to potent complex-mediated activation of iNKT cells in vitro and in vivo. Finally, LDLR-mutant PBMCs of patients with familial hypercholesterolemia showed impaired activation and proliferation of iNKT cells upon stimulation, underscoring the relevance of lipoproteins as a lipid antigen delivery system in humans. Taken together, circulating lipoproteins form complexes with lipid antigens to facilitate their transport and uptake by APCs, leading to enhanced iNKT cell activation. This study thereby reveals a potentially novel mechanism of lipid antigen delivery to APCs and provides further insight into the immunological capacities of circulating lipoproteins.


Assuntos
Células T Matadoras Naturais , Humanos , Células Apresentadoras de Antígenos , Lipoproteínas/metabolismo
5.
Cell Rep ; 42(4): 112310, 2023 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-36989114

RESUMO

Protective immune responses against respiratory pathogens, such as severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and influenza virus, are initiated by the mucosal immune system. However, most licensed vaccines are administered parenterally and are largely ineffective at inducing mucosal immunity. The development of safe and effective mucosal vaccines has been hampered by the lack of a suitable mucosal adjuvant. In this study we explore a class of adjuvant that harnesses mucosal-associated invariant T (MAIT) cells. We show evidence that intranasal immunization of MAIT cell agonists co-administered with protein, including the spike receptor binding domain from SARS-CoV-2 virus and hemagglutinin from influenza virus, induce protective humoral immunity and immunoglobulin A production. MAIT cell adjuvant activity is mediated by CD40L-dependent activation of dendritic cells and subsequent priming of T follicular helper cells. In summary, we show that MAIT cells are promising vaccine targets that can be utilized as cellular adjuvants in mucosal vaccines.


Assuntos
COVID-19 , Células T Invariantes Associadas à Mucosa , Humanos , Imunidade Humoral , Anticorpos Antivirais , SARS-CoV-2 , Adjuvantes Imunológicos/farmacologia , Imunidade nas Mucosas , Diferenciação Celular , Células Dendríticas
6.
Semin Immunol ; 61-64: 101663, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36306661

RESUMO

Mucosal Associated Invariant T cells (MAIT) exert potent antimicrobial activity through direct recognition of metabolite-MR1 complexes and indirect activation by inflammatory cytokines. Additionally, via licensing of antigen presenting cells, MAIT cells orchestrate humoral and cellular adaptive immunity. Our recent understanding of molecular mechanisms of MAIT cell activation, and of the signals required to differentiate them in polarised subsets, pave the way for harnessing their functionality through small molecules or adoptive cell therapy.


Assuntos
Infecções Bacterianas , Células T Invariantes Associadas à Mucosa , Humanos , Infecções Bacterianas/terapia , Citocinas , Antígenos de Histocompatibilidade Classe I , Ativação Linfocitária
7.
J Biol Chem ; 298(2): 101542, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34968463

RESUMO

The monomorphic antigen-presenting molecule major histocompatibility complex-I-related protein 1 (MR1) presents small-molecule metabolites to mucosal-associated invariant T (MAIT) cells. The MR1-MAIT cell axis has been implicated in a variety of infectious and noncommunicable diseases, and recent studies have begun to develop an understanding of the molecular mechanisms underlying this specialized antigen presentation pathway. However, proteins regulating MR1 folding, loading, stability, and surface expression remain to be identified. Here, we performed a gene trap screen to discover novel modulators of MR1 surface expression through insertional mutagenesis of an MR1-overexpressing clone derived from the near-haploid human cell line HAP1 (HAP1.MR1). The most significant positive regulators identified included ß2-microglobulin, a known regulator of MR1 surface expression, and ATP13A1, a P5-type ATPase in the endoplasmic reticulum (ER) not previously known to be associated with MR1-mediated antigen presentation. CRISPR/Cas9-mediated knockout of ATP13A1 in both HAP1.MR1 and THP-1 cell lines revealed a profound reduction in MR1 protein levels and a concomitant functional defect specific to MR1-mediated antigen presentation. Collectively, these data are consistent with the ER-resident ATP13A1 being a key posttranscriptional determinant of MR1 surface expression.


Assuntos
Apresentação de Antígeno , Antígenos de Histocompatibilidade Classe I , Complexo Principal de Histocompatibilidade , Antígenos de Histocompatibilidade Menor , ATPases do Tipo-P , Antígenos de Histocompatibilidade Classe I/metabolismo , Humanos , Complexo Principal de Histocompatibilidade/imunologia , Antígenos de Histocompatibilidade Menor/imunologia , ATPases do Tipo-P/imunologia
8.
Cell Rep ; 35(6): 109101, 2021 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-33979616

RESUMO

Depleting the microenvironment of important nutrients such as arginine is a key strategy for immune evasion by cancer cells. Many tumors overexpress arginase, but it is unclear how these cancers, but not T cells, tolerate arginine depletion. In this study, we show that tumor cells synthesize arginine from citrulline by upregulating argininosuccinate synthetase 1 (ASS1). Under arginine starvation, ASS1 transcription is induced by ATF4 and CEBPß binding to an enhancer within ASS1. T cells cannot induce ASS1, despite the presence of active ATF4 and CEBPß, as the gene is repressed. Arginine starvation drives global chromatin compaction and repressive histone methylation, which disrupts ATF4/CEBPß binding and target gene transcription. We find that T cell activation is impaired in arginine-depleted conditions, with significant metabolic perturbation linked to incomplete chromatin remodeling and misregulation of key genes. Our results highlight a T cell behavior mediated by nutritional stress, exploited by cancer cells to enable pathological immune evasion.


Assuntos
Arginina/metabolismo , Cromatina/metabolismo , Evasão da Resposta Imune/genética , Neoplasias/genética , Linfócitos T/metabolismo , Animais , Humanos
9.
Med ; 2(2): 164-179.e12, 2021 02 12.
Artigo em Inglês | MEDLINE | ID: mdl-33665641

RESUMO

BACKGROUND: How specific nutrients influence adaptive immunity is of broad interest. Iron deficiency is the most common micronutrient deficiency worldwide and imparts a significant burden of global disease; however, its effects on immunity remain unclear. METHODS: We used a hepcidin mimetic and several genetic models to examine the effect of low iron availability on T cells in vitro and on immune responses to vaccines and viral infection in mice. We examined humoral immunity in human patients with raised hepcidin and low serum iron caused by mutant TMPRSS6. We tested the effect of iron supplementation on vaccination-induced humoral immunity in piglets, a natural model of iron deficiency. FINDINGS: We show that low serum iron (hypoferremia), caused by increased hepcidin, severely impairs effector and memory responses to immunizations. The intensified metabolism of activated lymphocytes requires the support of enhanced iron acquisition, which is facilitated by IRP1/2 and TFRC. Accordingly, providing extra iron improved the response to vaccination in hypoferremic mice and piglets, while conversely, hypoferremic humans with chronically increased hepcidin have reduced concentrations of antibodies specific for certain pathogens. Imposing hypoferremia blunted the T cell, B cell, and neutralizing antibody responses to influenza virus infection in mice, allowing the virus to persist and exacerbating lung inflammation and morbidity. CONCLUSIONS: Hypoferremia, a well-conserved physiological innate response to infection, can counteract the development of adaptive immunity. This nutrient trade-off is relevant for understanding and improving immune responses to infections and vaccines in the globally common contexts of iron deficiency and inflammatory disorders. FUNDING: Medical Research Council, UK.


Assuntos
Deficiências de Ferro , Distúrbios do Metabolismo do Ferro , Animais , Hepcidinas/genética , Humanos , Imunidade Humoral , Ferro , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Suínos , Vacinação
11.
J Exp Med ; 218(2)2021 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-33416891

RESUMO

Juvenile myelomonocytic leukemia (JMML) is a poor-prognosis childhood leukemia usually caused by RAS-pathway mutations. The cellular hierarchy in JMML is poorly characterized, including the identity of leukemia stem cells (LSCs). FACS and single-cell RNA sequencing reveal marked heterogeneity of JMML hematopoietic stem/progenitor cells (HSPCs), including an aberrant Lin-CD34+CD38-CD90+CD45RA+ population. Single-cell HSPC index-sorting and clonogenic assays show that (1) all somatic mutations can be backtracked to the phenotypic HSC compartment, with RAS-pathway mutations as a "first hit," (2) mutations are acquired with both linear and branching patterns of clonal evolution, and (3) mutant HSPCs are present after allogeneic HSC transplant before molecular/clinical evidence of relapse. Stem cell assays reveal interpatient heterogeneity of JMML LSCs, which are present in, but not confined to, the phenotypic HSC compartment. RNA sequencing of JMML LSC reveals up-regulation of stem cell and fetal genes (HLF, MEIS1, CNN3, VNN2, and HMGA2) and candidate therapeutic targets/biomarkers (MTOR, SLC2A1, and CD96), paving the way for LSC-directed disease monitoring and therapy in this disease.


Assuntos
Células-Tronco Hematopoéticas/patologia , Leucemia Mielomonocítica Juvenil/patologia , Animais , Biomarcadores Tumorais/genética , Linhagem Celular , Feminino , Humanos , Leucemia Mielomonocítica Juvenil/genética , Masculino , Camundongos , Mutação/genética , Células-Tronco Neoplásicas/patologia , Transdução de Sinais/genética , Regulação para Cima/genética
12.
Mol Immunol ; 129: 121-126, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33293099

RESUMO

The MHC class I-related protein, MR1, presents small metabolite antigens to an unusual subset of innate-like T cells. Herein, we highlight recent progress in our understanding of MR1's unique antigen presenting pathway, with features of both MHC class I and class II antigen presentation, as highlighted during the EMBO Workshop: CD1-MR1, Beyond MHC-restricted lymphocytes, Oxford, 2019. There is increasing evidence for a role of MR1 restricted T cells in several immune contexts, from cancer to autoimmunity and infections, and therapeutic harnessing of this important biological axis through generation of agonist and antagonist MR1 ligands requires a thorough understanding of the molecular mechanisms of MR1-dependent antigen presentation.


Assuntos
Apresentação de Antígeno/imunologia , Antígenos de Histocompatibilidade Classe I/imunologia , Células T Invariantes Associadas à Mucosa/imunologia , Animais , Antígenos/imunologia , Autoimunidade/imunologia , Antígenos de Histocompatibilidade Classe II/imunologia , Humanos , Ligantes
13.
Br J Cancer ; 124(4): 817-830, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33214684

RESUMO

BACKGROUND: Interferon (IFN) signalling pathways, a key element of the innate immune response, contribute to resistance to conventional chemotherapy, radiotherapy, and immunotherapy, and are often deregulated in cancer. The deubiquitylating enzyme USP18 is a major negative regulator of the IFN signalling cascade and is the predominant human protease that cleaves ISG15, a ubiquitin-like protein tightly regulated in the context of innate immunity, from its modified substrate proteins in vivo. METHODS: In this study, using advanced proteomic techniques, we have significantly expanded the USP18-dependent ISGylome and proteome in a chronic myeloid leukaemia (CML)-derived cell line. USP18-dependent effects were explored further in CML and colorectal carcinoma cellular models. RESULTS: Novel ISGylation targets were characterised that modulate the sensing of innate ligands, antigen presentation and secretion of cytokines. Consequently, CML USP18-deficient cells are more antigenic, driving increased activation of cytotoxic T lymphocytes (CTLs) and are more susceptible to irradiation. CONCLUSIONS: Our results provide strong evidence for USP18 in regulating antigenicity and radiosensitivity, highlighting its potential as a cancer target.


Assuntos
Neoplasias Colorretais/enzimologia , Neoplasias Colorretais/imunologia , Citocinas/metabolismo , Leucemia Mielogênica Crônica BCR-ABL Positiva/enzimologia , Leucemia Mielogênica Crônica BCR-ABL Positiva/imunologia , Ubiquitina Tiolesterase/metabolismo , Ubiquitinas/metabolismo , Variação Antigênica , Linhagem Celular Tumoral , Neoplasias Colorretais/radioterapia , Técnicas de Inativação de Genes , Células HCT116 , Humanos , Leucemia Mielogênica Crônica BCR-ABL Positiva/radioterapia , Tolerância a Radiação/genética , Tolerância a Radiação/imunologia , Ubiquitina Tiolesterase/deficiência , Ubiquitina Tiolesterase/genética
14.
Front Immunol ; 11: 565096, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33193332

RESUMO

Adaptive immune recognition is mediated by specific interactions between heterodimeric T cell receptors (TCRs) and their cognate peptide-MHC (pMHC) ligands, and the methods to accurately predict TCR:pMHC interaction would have profound clinical, therapeutic and pharmaceutical applications. Herein, we review recent developments in predicting cross-reactivity and antigen specificity of TCR recognition. We discuss current experimental and computational approaches to investigate cross-reactivity and antigen-specificity of TCRs and highlight how integrating kinetic, biophysical and structural features may offer valuable insights in modeling immunogenicity. We further underscore the close inter-relationship of these two interconnected notions and the need to investigate each in the light of the other for a better understanding of T cell responsiveness for the effective clinical applications.


Assuntos
Apresentação de Antígeno , Antígenos/imunologia , Peptídeos/imunologia , Receptores de Antígenos de Linfócitos T/imunologia , Linfócitos T/imunologia , Animais , Reações Cruzadas , Epitopos de Linfócito T/imunologia , Humanos , Cinética , Ligantes , Ligação Proteica
15.
Front Immunol ; 11: 1556, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32903532

RESUMO

Mucosal-associated invariant T (MAIT) cells are unconventional T lymphocytes that express a semi-invariant T cell receptor (TCR) recognizing microbial vitamin B metabolites presented by the highly conserved major histocompatibility complex (MHC) class I like molecule, MR1. The vitamin B metabolites are produced by several commensal and pathogenic bacteria and yeast, but not viruses. Nevertheless, viral infections can trigger MAIT cell activation in a TCR-independent manner, through the release of pro-inflammatory cytokines by antigen-presenting cells (APCs). MAIT cells belong to the innate like T family of cells with a memory phenotype, which allows them to rapidly release Interferon (IFN)-γ, tumor necrosis factor (TNF)-α, and in some circumstances Interleukin (IL)-17 and IL-10, exerting an immunomodulatory role on the ensuing immune response, akin to iNKT cells and γδ T cells. Recent studies implicate MAIT cells in a variety of inflammatory, autoimmune diseases, and in cancer. In addition, through the analysis of the transcriptome of MAIT cells activated in different experimental conditions, an important function in tissue repair and control of immune homeostasis has emerged, shared with other innate-like T cells. In this review, we discuss these recent findings, focussing on the understanding of the molecular mechanisms underpinning MAIT cell activation and effector function in health and disease, which ultimately will aid in clinically harnessing this unique, not donor-restricted cell subtype.


Assuntos
Imunomodulação , Células T Invariantes Associadas à Mucosa/imunologia , Células T Invariantes Associadas à Mucosa/metabolismo , Animais , Comunicação Celular , Citocinas/metabolismo , Células Dendríticas/imunologia , Células Dendríticas/metabolismo , Humanos , Leucócitos/imunologia , Leucócitos/metabolismo , Ativação Linfocitária/genética , Ativação Linfocitária/imunologia , Ligação Proteica , Receptores de Antígenos de Linfócitos T/metabolismo , Transdução de Sinais , Subpopulações de Linfócitos T/imunologia , Subpopulações de Linfócitos T/metabolismo
16.
Nat Immunol ; 21(11): 1336-1345, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32887977

RESUMO

The development of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccines and therapeutics will depend on understanding viral immunity. We studied T cell memory in 42 patients following recovery from COVID-19 (28 with mild disease and 14 with severe disease) and 16 unexposed donors, using interferon-γ-based assays with peptides spanning SARS-CoV-2 except ORF1. The breadth and magnitude of T cell responses were significantly higher in severe as compared with mild cases. Total and spike-specific T cell responses correlated with spike-specific antibody responses. We identified 41 peptides containing CD4+ and/or CD8+ epitopes, including six immunodominant regions. Six optimized CD8+ epitopes were defined, with peptide-MHC pentamer-positive cells displaying the central and effector memory phenotype. In mild cases, higher proportions of SARS-CoV-2-specific CD8+ T cells were observed. The identification of T cell responses associated with milder disease will support an understanding of protective immunity and highlights the potential of including non-spike proteins within future COVID-19 vaccine design.


Assuntos
Antígenos Virais/imunologia , Betacoronavirus/imunologia , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD8-Positivos/imunologia , Memória Imunológica/imunologia , COVID-19 , Vacinas contra COVID-19 , Infecções por Coronavirus/imunologia , Infecções por Coronavirus/patologia , Infecções por Coronavirus/prevenção & controle , Epitopos de Linfócito T/imunologia , Humanos , Epitopos Imunodominantes/imunologia , Pandemias , Pneumonia Viral/imunologia , Pneumonia Viral/patologia , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus/imunologia , Reino Unido , Vacinas Virais/imunologia
17.
Proc Natl Acad Sci U S A ; 117(34): 20717-20728, 2020 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-32788367

RESUMO

Mucosal-associated invariant T (MAIT) cells are innate T lymphocytes activated by bacteria that produce vitamin B2 metabolites. Mouse models of infection have demonstrated a role for MAIT cells in antimicrobial defense. However, proposed protective roles of MAIT cells in human infections remain unproven and clinical conditions associated with selective absence of MAIT cells have not been identified. We report that typhoidal and nontyphoidal Salmonella enterica strains activate MAIT cells. However, S. Typhimurium sequence type 313 (ST313) lineage 2 strains, which are responsible for the burden of multidrug-resistant nontyphoidal invasive disease in Africa, escape MAIT cell recognition through overexpression of ribB This bacterial gene encodes the 4-dihydroxy-2-butanone-4-phosphate synthase enzyme of the riboflavin biosynthetic pathway. The MAIT cell-specific phenotype did not extend to other innate lymphocytes. We propose that ribB overexpression is an evolved trait that facilitates evasion from immune recognition by MAIT cells and contributes to the invasive pathogenesis of S. Typhimurium ST313 lineage 2.


Assuntos
Células T Invariantes Associadas à Mucosa/imunologia , Salmonella typhimurium/genética , Salmonella typhimurium/metabolismo , África Subsaariana , Antibacterianos , Diarreia/microbiologia , Diarreia/mortalidade , Humanos , Evasão da Resposta Imune/genética , Evasão da Resposta Imune/fisiologia , Células T Invariantes Associadas à Mucosa/metabolismo , Infecções por Salmonella/imunologia , Salmonella typhimurium/patogenicidade
18.
bioRxiv ; 2020 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-32577665

RESUMO

COVID-19 is an ongoing global crisis in which the development of effective vaccines and therapeutics will depend critically on understanding the natural immunity to the virus, including the role of SARS-CoV-2-specific T cells. We have conducted a study of 42 patients following recovery from COVID-19, including 28 mild and 14 severe cases, comparing their T cell responses to those of 16 control donors. We assessed the immune memory of T cell responses using IFNγ based assays with overlapping peptides spanning SARS-CoV-2 apart from ORF1. We found the breadth, magnitude and frequency of memory T cell responses from COVID-19 were significantly higher in severe compared to mild COVID-19 cases, and this effect was most marked in response to spike, membrane, and ORF3a proteins. Total and spike-specific T cell responses correlated with the anti-Spike, anti-Receptor Binding Domain (RBD) as well as anti-Nucleoprotein (NP) endpoint antibody titre (p<0.001, <0.001 and =0.002). We identified 39 separate peptides containing CD4 + and/or CD8 + epitopes, which strikingly included six immunodominant epitope clusters targeted by T cells in many donors, including 3 clusters in spike (recognised by 29%, 24%, 18% donors), two in the membrane protein (M, 32%, 47%) and one in the nucleoprotein (Np, 35%). CD8+ responses were further defined for their HLA restriction, including B*4001-restricted T cells showing central memory and effector memory phenotype. In mild cases, higher frequencies of multi-cytokine producing M- and NP-specific CD8 + T cells than spike-specific CD8 + T cells were observed. They furthermore showed a higher ratio of SARS-CoV-2-specific CD8 + to CD4 + T cell responses. Immunodominant epitope clusters and peptides containing T cell epitopes identified in this study will provide critical tools to study the role of virus-specific T cells in control and resolution of SARS-CoV-2 infections. The identification of T cell specificity and functionality associated with milder disease, highlights the potential importance of including non-spike proteins within future COVID-19 vaccine design.

19.
Proc Natl Acad Sci U S A ; 117(19): 10465-10475, 2020 05 12.
Artigo em Inglês | MEDLINE | ID: mdl-32341160

RESUMO

The antigen-presenting molecule MR1 presents riboflavin-based metabolites to Mucosal-Associated Invariant T (MAIT) cells. While MR1 egress to the cell surface is ligand-dependent, the ability of small-molecule ligands to impact on MR1 cellular trafficking remains unknown. Arising from an in silico screen of the MR1 ligand-binding pocket, we identify one ligand, 3-([2,6-dioxo-1,2,3,6-tetrahydropyrimidin-4-yl]formamido)propanoic acid, DB28, as well as an analog, methyl 3-([2,6-dioxo-1,2,3,6-tetrahydropyrimidin-4-yl]formamido)propanoate, NV18.1, that down-regulate MR1 from the cell surface and retain MR1 molecules in the endoplasmic reticulum (ER) in an immature form. DB28 and NV18.1 compete with the known MR1 ligands, 5-OP-RU and acetyl-6-FP, for MR1 binding and inhibit MR1-dependent MAIT cell activation. Crystal structures of the MAIT T cell receptor (TCR) complexed with MR1-DB28 and MR1-NV18.1, show that these two ligands reside within the A'-pocket of MR1. Neither ligand forms a Schiff base with MR1 molecules; both are nevertheless sequestered by a network of hydrophobic and polar contacts. Accordingly, we define a class of compounds that inhibits MR1 cellular trafficking.


Assuntos
Antígenos de Histocompatibilidade Classe I/metabolismo , Antígenos de Histocompatibilidade Menor/metabolismo , Células T Invariantes Associadas à Mucosa/metabolismo , Apresentação de Antígeno , Linhagem Celular , Membrana Celular/metabolismo , Regulação para Baixo , Regulação da Expressão Gênica/genética , Humanos , Ligantes , Ativação Linfocitária , Transporte Proteico , Receptores de Antígenos de Linfócitos T alfa-beta/metabolismo , Riboflavina/metabolismo , Células THP-1
20.
ACS Chem Biol ; 15(2): 437-445, 2020 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-31909966

RESUMO

Mucosal-associated invariant T (MAIT) cells are antibacterial effector T cells that react to pyrimidines derived from bacterial riboflavin synthesis presented by the monomorphic molecule MR1. A major challenge in MAIT cell research is that the commonly used MAIT agonist precursor, 5-amino-6-d-ribitylaminouracil (5-A-RU), is labile to autoxidation, resulting in a loss of biological activity. Here, we characterize two independent autoxidation processes by LCMS. To overcome the marked instability, we report the synthesis of a 5-A-RU prodrug generated by modification of the 5-amino group with a cleavable valine-citrulline-p-aminobenzyl carbamate. The compound is stable in prodrug form, with the parent amine (i.e., 5-A-RU) released only after enzymatic cleavage. Analysis of the prodrug in vitro and in vivo showed an enhanced MAIT cell activation profile compared to 5-A-RU, which was associated with preferential loading within recycling endosomes, a route used by some natural agonists. This prodrug design therefore overcomes the difficulties associated with 5-A-RU in biological studies and provides an opportunity to explore different presentation pathways.


Assuntos
Endossomos/metabolismo , Antígenos de Histocompatibilidade Classe I/metabolismo , Fatores Imunológicos/farmacologia , Ativação Linfocitária/efeitos dos fármacos , Antígenos de Histocompatibilidade Menor/metabolismo , Células T Invariantes Associadas à Mucosa/efeitos dos fármacos , Pró-Fármacos/farmacologia , Animais , Humanos , Fatores Imunológicos/síntese química , Fatores Imunológicos/metabolismo , Camundongos , Pró-Fármacos/síntese química , Pró-Fármacos/metabolismo , Ribitol/análogos & derivados , Ribitol/síntese química , Ribitol/metabolismo , Ribitol/farmacologia , Uracila/análogos & derivados , Uracila/síntese química , Uracila/metabolismo , Uracila/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...