Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 9785, 2024 04 29.
Artigo em Inglês | MEDLINE | ID: mdl-38684791

RESUMO

Several studies have documented the significant impact of methodological choices in microbiome analyses. The myriad of methodological options available complicate the replication of results and generally limit the comparability of findings between independent studies that use differing techniques and measurement pipelines. Here we describe the Mosaic Standards Challenge (MSC), an international interlaboratory study designed to assess the impact of methodological variables on the results. The MSC did not prescribe methods but rather asked participating labs to analyze 7 shared reference samples (5 × human stool samples and 2 × mock communities) using their standard laboratory methods. To capture the array of methodological variables, each participating lab completed a metadata reporting sheet that included 100 different questions regarding the details of their protocol. The goal of this study was to survey the methodological landscape for microbiome metagenomic sequencing (MGS) analyses and the impact of methodological decisions on metagenomic sequencing results. A total of 44 labs participated in the MSC by submitting results (16S or WGS) along with accompanying metadata; thirty 16S rRNA gene amplicon datasets and 14 WGS datasets were collected. The inclusion of two types of reference materials (human stool and mock communities) enabled analysis of both MGS measurement variability between different protocols using the biologically-relevant stool samples, and MGS bias with respect to ground truth values using the DNA mixtures. Owing to the compositional nature of MGS measurements, analyses were conducted on the ratio of Firmicutes: Bacteroidetes allowing us to directly apply common statistical methods. The resulting analysis demonstrated that protocol choices have significant effects, including both bias of the MGS measurement associated with a particular methodological choices, as well as effects on measurement robustness as observed through the spread of results between labs making similar methodological choices. In the analysis of the DNA mock communities, MGS measurement bias was observed even when there was general consensus among the participating laboratories. This study was the result of a collaborative effort that included academic, commercial, and government labs. In addition to highlighting the impact of different methodological decisions on MGS result comparability, this work also provides insights for consideration in future microbiome measurement study design.


Assuntos
Fezes , Metagenômica , Microbiota , RNA Ribossômico 16S , Humanos , Metagenômica/métodos , Metagenômica/normas , RNA Ribossômico 16S/genética , Fezes/microbiologia , Microbiota/genética , Viés , Metagenoma , Microbioma Gastrointestinal/genética , Análise de Sequência de DNA/métodos , Bactérias/genética , Bactérias/classificação , Bactérias/isolamento & purificação , Sequenciamento de Nucleotídeos em Larga Escala/métodos
2.
BMC Genomics ; 25(1): 282, 2024 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-38493105

RESUMO

BACKGROUND: Blood transcriptomic analysis is widely used to provide a detailed picture of a physiological state with potential outcomes for applications in diagnostics and monitoring of the immune response to vaccines. However, multi-species transcriptomic analysis is still a challenge from a technological point of view and a standardized workflow is urgently needed to allow interspecies comparisons. RESULTS: Here, we propose a single and complete total RNA-Seq workflow to generate reliable transcriptomic data from blood samples from humans and from animals typically used in preclinical models. Blood samples from a maximum of six individuals and four different species (rabbit, non-human primate, mouse and human) were extracted and sequenced in triplicates. The workflow was evaluated using different wet-lab and dry-lab criteria, including RNA quality and quantity, the library molarity, the number of raw sequencing reads, the Phred-score quality, the GC content, the performance of ribosomal-RNA and globin depletion, the presence of residual DNA, the strandness, the percentage of coding genes, the number of genes expressed, and the presence of saturation plateau in rarefaction curves. We identified key criteria and their associated thresholds to be achieved for validating the transcriptomic workflow. In this study, we also generated an automated analysis of the transcriptomic data that streamlines the validation of the dataset generated. CONCLUSIONS: Our study has developed an end-to-end workflow that should improve the standardization and the inter-species comparison in blood transcriptomics studies. In the context of vaccines and drug development, RNA sequencing data from preclinical models can be directly compared with clinical data and used to identify potential biomarkers of value to monitor safety and efficacy.


Assuntos
Perfilação da Expressão Gênica , Vacinas , Humanos , Animais , Camundongos , Coelhos , Fluxo de Trabalho , Transcriptoma , RNA , Sequenciamento de Nucleotídeos em Larga Escala
3.
Sci Rep ; 13(1): 22593, 2023 12 18.
Artigo em Inglês | MEDLINE | ID: mdl-38114587

RESUMO

Next-generation sequencing workflows, using either metabarcoding or metagenomic approaches, have massively contributed to expanding knowledge of the human gut microbiota, but methodological bias compromises reproducibility across studies. Where these biases have been quantified within several comparative analyses on their own, none have measured inter-laboratory reproducibility using similar DNA material. Here, we designed a multicenter study involving seven participating laboratories dedicated to partial- (P1 to P5), full-length (P6) metabarcoding, or metagenomic profiling (MGP) using DNA from a mock microbial community or extracted from 10 fecal samples collected at two time points from five donors. Fecal material was collected, and the DNA was extracted according to the IHMS protocols. The mock and isolated DNA were then provided to the participating laboratories for sequencing. Following sequencing analysis according to the laboratories' routine pipelines, relative taxonomic-count tables defined at the genus level were provided and analyzed. Large variations in alpha-diversity between laboratories, uncorrelated with sequencing depth, were detected among the profiles. Half of the genera identified by P1 were unique to this partner and two-thirds of the genera identified by MGP were not detected by P3. Analysis of beta-diversity revealed lower inter-individual variance than inter-laboratory variances. The taxonomic profiles of P5 and P6 were more similar to those of MGP than those obtained by P1, P2, P3, and P4. Reanalysis of the raw sequences obtained by partial-length metabarcoding profiling, using a single bioinformatic pipeline, harmonized the description of the bacterial profiles, which were more similar to each other, except for P3, and closer to the profiles obtained by MGP. This study highlights the major impact of the bioinformatics pipeline, and primarily the database used for taxonomic annotation. Laboratories need to benchmark and optimize their bioinformatic pipelines using standards to monitor their effectiveness in accurately detecting taxa present in gut microbiota.


Assuntos
Microbioma Gastrointestinal , Microbiota , Humanos , Microbioma Gastrointestinal/genética , Reprodutibilidade dos Testes , Microbiota/genética , Sequenciamento de Nucleotídeos em Larga Escala/métodos , DNA Bacteriano/genética , DNA Bacteriano/análise , RNA Ribossômico 16S/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA